104 research outputs found

    Transportation Mode Detection Based on Permutation Entropy and Extreme Learning Machine

    Get PDF
    With the increasing prevalence of GPS devices and mobile phones, transportation mode detection based on GPS data has been a hot topic in GPS trajectory data analysis. Transportation modes such as walking, driving, bus, and taxi denote an important characteristic of the mobile user. Longitude, latitude, speed, acceleration, and direction are usually used as features in transportation mode detection. In this paper, first, we explore the possibility of using Permutation Entropy (PE) of speed, a measure of complexity and uncertainty of GPS trajectory segment, as a feature for transportation mode detection. Second, we employ Extreme Learning Machine (ELM) to distinguish GPS trajectory segments of different transportation. Finally, to evaluate the performance of the proposed method, we make experiments on GeoLife dataset. Experiments results show that we can get more than 50% accuracy when only using PE as a feature to characterize trajectory sequence. PE can indeed be effectively used to detect transportation mode from GPS trajectory. The proposed method has much better accuracy and faster running time than the methods based on the other features and SVM classifier

    Case Report: A novel FGFR1 fusion in acute B-lymphoblastic leukemia identified by RNA sequencing

    Get PDF
    8p11 myeloproliferative syndrome is a rare hematological malignancy with aggressive course caused by the various translocation of FGFR1. In this study, a novel FGFR1 fusion was identified by RNA sequencing in a 28-year-old male patient with acute B-lymphoblastic leukemia. The patient harbors an in-frame fusion between KIF5B exon 15 and FGFR1 exon 10. The FGFR1 fusion and its protein expression was validated by Sanger sequencing and Western blot. Meanwhile, cytogenetic analysis reported a normal karyotype and targeted DNA sequencing identified no driver mutations, respectively. Despite he achieved complete remission after induction regimen, a relapse occurred and he became refractory to chemotherapy, and salvage haploidentical hematopoietic stem cell transplantation failed to control the progressive disease. In conclusion, we present the first case of KIF5B-FGFR1 fusion in hematological malignancy. These findings extend the spectrum of translocation in 8p11 myeloproliferative syndrome, and demonstrate the great prospect of RNA sequencing in clinical practice again

    Long‐Range Cationic Disordering Induces two Distinct Degradation Pathways in Co‐Free Ni‐Rich Layered Cathodes

    Get PDF
    Ni-rich layered oxides are one of the most attractive cathode materials in high-energy-density lithium-ion batteries, their degradation mechanisms are still not completely elucidated. Herein, we report a strong dependence of degradation pathways on the long-range cationic disordering of Co-free Ni-rich Li1−m(Ni0.94Al0.06)1+mO2 (NA). Interestingly, a disordered layered phase with lattice mismatch can be easily formed in the near-surface region of NA particles with very low cation disorder (NA-LCD, m≤0.06) over electrochemical cycling, while the layered structure is basically maintained in the core of particles forming a “core–shell” structure. Such surface reconstruction triggers a rapid capacity decay during the first 100 cycles between 2.7 and 4.3 V at 1 C or 3 C. On the contrary, the local lattice distortions are gradually accumulated throughout the whole NA particles with higher degrees of cation disorder (NA-HCD, 0.06≤m≤0.15) that lead to a slow capacity decay upon cycling

    Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>NDRG</it>2 (N-Myc downstream-regulated gene 2) was initially cloned in our laboratory. Previous results have shown that <it>NDRG</it>2 expressed differentially in normal and cancer tissues. Specifically, <it>NDRG</it>2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of <it>NDRG</it>2 inhibited the proliferation of cancer cells. <it>NDRG</it>2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether <it>NDRG</it>2 participates in carcinogenesis of the thyroid.</p> <p>Methods</p> <p>In this study, we investigated the expression profile of human <it>NDRG</it>2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40) and carcinomas (n = 35), along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc.</p> <p>Results</p> <p>The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of <it>NDRG</it>2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of <it>NDRG</it>2 expression with gender, age, different histotypes of thyroid cancers or distant metastases.</p> <p>Conclusion</p> <p>Our data indicates that <it>NDRG</it>2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of <it>NDRG2 </it>in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of <it>NDRG</it>2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma.</p

    De-escalated radiotherapy for HER2-overexpressing breast cancer patients with 1-3 positive lymph nodes undergoing anti-HER2 targeted therapy

    Get PDF
    BackgroundIn the era of anti-HER2 targeted therapy, the potential clinical feasibility of considering HER2-overexpressing breast cancer cases presenting with 1-3 positive axillary lymph nodes as low-risk, and thereby contemplating postoperative radiotherapy reduction, remains an important subject for in-depth examination. The aim of this retrospective study was to evaluate the effectiveness of de-escalated radiotherapy in T1-2N1M0 HER2-overexpressing breast cancer patients receiving anti-HER2 targeted therapy. Specifically, omitting regional lymph node irradiation (RNI) after breast-conserving surgery and only performing whole-breast irradiation or omitting postmastectomy radiation therapy.MethodsA retrospective analysis was conducted on 429 patients with stage T1-2N1M0 primary invasive HER2-overexpressing breast cancer from our center between 2004 and 2018. Patients who received anti-HER2 targeted therapy were divided into an RNI group and a no RNI group to assess the role of RNI. The prognostic role of RNI was investigated via the Kaplan-Meier method and Cox proportional hazards modeling.ResultsThe median follow-up time was 46.8 months (range 7.1–225.8 months). In the anti-HER2 targeted therapy group RNI yielded no significant improvements in invasive disease-free survival (IDFS) (p = 0.940), local-regional recurrence-free survival (p = 0.380), distant metastases-free survival (p = 0.698), or overall survival (p = 0.403). Estrogen receptor (ER) status (hazard ratio [HR] 0.105, 95% confidence interval [CI] 0.023–0.749, p = 0.004) and lymph vascular invasion status (LVI) (HR 5.721, 95% CI 1.586–20.633, p = 0.008) were identified as independent prognostic factors for IDFS, and ER-positive and LVI-negative patients exhibited better prognoses.ConclusionOmitting RNI may be a safe option in T1-2N1 HER2-overexpressing breast cancer patients receiving standardized anti-HER2 targeted therapy; particularly in ER-positive or LVI-negative subgroups

    RAGE Mediates Accelerated Diabetic Vein Graft Atherosclerosis Induced by Combined Mechanical Stress and AGEs via Synergistic ERK Activation

    Get PDF
    Aims/Hypothesis: Diabetes with hypertension rapidly accelerates vascular disease, but the underlying mechanism remains unclear. We evaluated the hypothesis that the receptor of advanced glycation end products (RAGE) might mediate combined signals initiated by diabetes-related AGEs and hypertension-induced mechanical stress as a common molecular sensor. Methods: In vivo surgical vein grafts created by grafting vena cava segments from C57BL/6J mice into the common carotid arteries of streptozotocin (STZ)-treated and untreated isogenic mice for 4 and 8 weeks were analyzed using morphometric and immunohistochemical techniques. In vitro quiescent mouse vascular smooth muscle cells (VSMCs) with either knockdown or overexpression of RAGE were subjected to cyclic stretching with or without AGEs. Extracellular signalregulated kinase (ERK) phosphorylation and Ki-67 expression were investigated. Results: Significant increases in neointimal formation, AGE deposition, Ki-67 expression, and RAGE were observed in the vein grafts of STZ-induced diabetic mice. The highest levels of ERK phosphorylation and Ki-67 expression in VSMCs were induced by simultaneous stretch stress and AGE exposure. The synergistic activation of ERKs and Ki-67 in VSMCs was significantly inhibited by siRNA-RAGE treatment and enhanced by over-expression of RAGE. Conclusion: RAGE may mediate synergistically increased ERK activation and VSMC proliferation induced by mechanica
    corecore