739 research outputs found

    Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications

    Full text link
    In this paper, we propose accurate and efficient finite difference methods to discretize the two- and three-dimensional fractional Laplacian (−Δ)α2(-\Delta)^{\frac{\alpha}{2}} (0<α<20 < \alpha < 2) in hypersingular integral form. The proposed finite difference methods provide a fractional analogue of the central difference schemes to the fractional Laplacian, and as α→2−\alpha \to 2^-, they collapse to the central difference schemes of the classical Laplace operator −Δ-\Delta. We prove that our methods are consistent if u∈C⌊α⌋,α−⌊α⌋+ϵ(Rd)u \in C^{\lfloor\alpha\rfloor, \alpha-\lfloor\alpha\rfloor+\epsilon}({\mathbb R}^d), and the local truncation error is O(hϵ){\mathcal O}(h^\epsilon), with ϵ>0\epsilon > 0 a small constant and ⌊⋅⌋\lfloor \cdot \rfloor denoting the floor function. If u∈C2+⌊α⌋,α−⌊α⌋+ϵ(Rd)u \in C^{2+\lfloor\alpha\rfloor, \alpha-\lfloor\alpha\rfloor+\epsilon}({\mathbb R}^d), they can achieve the second order of accuracy for any α∈(0,2)\alpha \in (0, 2). These results hold for any dimension d≥1d \ge 1 and thus improve the existing error estimates for the finite difference method of the one-dimensional fractional Laplacian. Extensive numerical experiments are provided and confirm our analytical results. We then apply our method to solve the fractional Poisson problems and the fractional Allen-Cahn equations. Numerical simulations suggest that to achieve the second order of accuracy, the solution of the fractional Poisson problem should {\it at most} satisfy u∈C1,1(Rd)u \in C^{1,1}({\mathbb R}^d). One merit of our methods is that they yield a multilevel Toeplitz stiffness matrix, an appealing property for the development of fast algorithms via the fast Fourier transform (FFT). Our studies of the two- and three-dimensional fractional Allen-Cahn equations demonstrate the efficiency of our methods in solving the high-dimensional fractional problems.Comment: 24 pages, 6 figures, and 6 table

    Autonomous Swarm Navigation

    Get PDF
    Robotic swarm systems attract increasing attention in a wide variety of applications, where a multitude of self-organized robotic entities collectively accomplish sensing or exploration tasks. Compared to a single robot, a swarm system offers advantages in terms of exploration speed, robustness against single point of failures, and collective observations of spatio-temporal processes. Autonomous swarm navigation, including swarm self-localization, the localization of external sources, and swarm control, is essential for the success of an autonomous swarm application. However, as a newly emerging technology, a thorough study of autonomous swarm navigation is still missing. In this thesis, we systematically study swarm navigation systems, particularly emphasizing on their collective performance. The general theory of swarm navigation as well as an in-depth study on a specific swarm navigation system proposed for future Mars exploration missions are covered. Concerning swarm localization, a decentralized algorithm is proposed, which achieves a near-optimal performance with low complexity for a dense swarm network. Regarding swarm control, a position-aware swarm control concept is proposed. The swarm is aware of not only the position estimates and the estimation uncertainties of itself and the sources, but also the potential motions to enrich position information. As a result, the swarm actively adapts its formation to improve localization performance, without losing track of other objectives, such as goal approaching and collision avoidance. The autonomous swarm navigation concept described in this thesis is verified for a specific Mars swarm exploration system. More importantly, this concept is generally adaptable to an extensive range of swarm applications

    Power-Based Direction-of-Arrival Estimation Using a Single Multi-Mode Antenna

    Full text link
    Phased antenna arrays are widely used for direction-of-arrival (DoA) estimation. For low-cost applications, signal power or received signal strength indicator (RSSI) based approaches can be an alternative. However, they usually require multiple antennas, a single antenna that can be rotated, or switchable antenna beams. In this paper we show how a multi-mode antenna (MMA) can be used for power-based DoA estimation. Only a single MMA is needed and neither rotation nor switching of antenna beams is required. We derive an estimation scheme as well as theoretical bounds and validate them through simulations. It is found that power-based DoA estimation with an MMA is feasible and accurate

    Exploiting Image Local And Nonlocal Consistency For Mixed Gaussian-Impulse Noise Removal

    Full text link
    Most existing image denoising algorithms can only deal with a single type of noise, which violates the fact that the noisy observed images in practice are often suffered from more than one type of noise during the process of acquisition and transmission. In this paper, we propose a new variational algorithm for mixed Gaussian-impulse noise removal by exploiting image local consistency and nonlocal consistency simultaneously. Specifically, the local consistency is measured by a hyper-Laplace prior, enforcing the local smoothness of images, while the nonlocal consistency is measured by three-dimensional sparsity of similar blocks, enforcing the nonlocal self-similarity of natural images. Moreover, a Split-Bregman based technique is developed to solve the above optimization problem efficiently. Extensive experiments for mixed Gaussian plus impulse noise show that significant performance improvements over the current state-of-the-art schemes have been achieved, which substantiates the effectiveness of the proposed algorithm.Comment: 6 pages, 4 figures, 3 tables, to be published at IEEE Int. Conf. on Multimedia & Expo (ICME) 201

    Image Restoration Using Joint Statistical Modeling in Space-Transform Domain

    Full text link
    This paper presents a novel strategy for high-fidelity image restoration by characterizing both local smoothness and nonlocal self-similarity of natural images in a unified statistical manner. The main contributions are three-folds. First, from the perspective of image statistics, a joint statistical modeling (JSM) in an adaptive hybrid space-transform domain is established, which offers a powerful mechanism of combining local smoothness and nonlocal self-similarity simultaneously to ensure a more reliable and robust estimation. Second, a new form of minimization functional for solving image inverse problem is formulated using JSM under regularization-based framework. Finally, in order to make JSM tractable and robust, a new Split-Bregman based algorithm is developed to efficiently solve the above severely underdetermined inverse problem associated with theoretical proof of convergence. Extensive experiments on image inpainting, image deblurring and mixed Gaussian plus salt-and-pepper noise removal applications verify the effectiveness of the proposed algorithm.Comment: 14 pages, 18 figures, 7 Tables, to be published in IEEE Transactions on Circuits System and Video Technology (TCSVT). High resolution pdf version and Code can be found at: http://idm.pku.edu.cn/staff/zhangjian/IRJSM

    Improved Total Variation based Image Compressive Sensing Recovery by Nonlocal Regularization

    Full text link
    Recently, total variation (TV) based minimization algorithms have achieved great success in compressive sensing (CS) recovery for natural images due to its virtue of preserving edges. However, the use of TV is not able to recover the fine details and textures, and often suffers from undesirable staircase artifact. To reduce these effects, this letter presents an improved TV based image CS recovery algorithm by introducing a new nonlocal regularization constraint into CS optimization problem. The nonlocal regularization is built on the well known nonlocal means (NLM) filtering and takes advantage of self-similarity in images, which helps to suppress the staircase effect and restore the fine details. Furthermore, an efficient augmented Lagrangian based algorithm is developed to solve the above combined TV and nonlocal regularization constrained problem. Experimental results demonstrate that the proposed algorithm achieves significant performance improvements over the state-of-the-art TV based algorithm in both PSNR and visual perception.Comment: 4 Pages, 1 figures, 3 tables, to be published at IEEE Int. Symposium of Circuits and Systems (ISCAS) 201

    Image Super-Resolution via Dual-Dictionary Learning And Sparse Representation

    Full text link
    Learning-based image super-resolution aims to reconstruct high-frequency (HF) details from the prior model trained by a set of high- and low-resolution image patches. In this paper, HF to be estimated is considered as a combination of two components: main high-frequency (MHF) and residual high-frequency (RHF), and we propose a novel image super-resolution method via dual-dictionary learning and sparse representation, which consists of the main dictionary learning and the residual dictionary learning, to recover MHF and RHF respectively. Extensive experimental results on test images validate that by employing the proposed two-layer progressive scheme, more image details can be recovered and much better results can be achieved than the state-of-the-art algorithms in terms of both PSNR and visual perception.Comment: 4 pages, 4 figures, 1 table, to be published at IEEE Int. Symposium of Circuits and Systems (ISCAS) 201
    • …
    corecore