1,173 research outputs found

    Construction of Personality and Temperament of Chinese Male Homosexuality in the Social Media Environment

    Get PDF
    Social media is a double-edged sword. It shapes a universal standard, which can be used to encourage or eliminate “beauty” through traffic. With the standard of “beauty”, guiding the public to make efforts towards the standard to generate motivation and behavior. Under the influence of social media, the character and temperament of Chinese male homosexuality mainly tend to be masculine. This paper analyzes the construction of their gender temperament from the visual and psychological perspectives, reflecting the top and bottom in the character and temperament of Chinese male homosexuality. At the same time, it is also found that the introverted temperament is easier to be accepted and welcomed, which is closely related to Chinese traditional culture

    Adversarial Purification of Information Masking

    Full text link
    Adversarial attacks meticulously generate minuscule, imperceptible perturbations to images to deceive neural networks. Counteracting these, adversarial purification methods seek to transform adversarial input samples into clean output images to defend against adversarial attacks. Nonetheless, extent generative models fail to effectively eliminate adversarial perturbations, yielding less-than-ideal purification results. We emphasize the potential threat of residual adversarial perturbations to target models, quantitatively establishing a relationship between perturbation scale and attack capability. Notably, the residual perturbations on the purified image primarily stem from the same-position patch and similar patches of the adversarial sample. We propose a novel adversarial purification approach named Information Mask Purification (IMPure), aims to extensively eliminate adversarial perturbations. To obtain an adversarial sample, we first mask part of the patches information, then reconstruct the patches to resist adversarial perturbations from the patches. We reconstruct all patches in parallel to obtain a cohesive image. Then, in order to protect the purified samples against potential similar regional perturbations, we simulate this risk by randomly mixing the purified samples with the input samples before inputting them into the feature extraction network. Finally, we establish a combined constraint of pixel loss and perceptual loss to augment the model's reconstruction adaptability. Extensive experiments on the ImageNet dataset with three classifier models demonstrate that our approach achieves state-of-the-art results against nine adversarial attack methods. Implementation code and pre-trained weights can be accessed at \textcolor{blue}{https://github.com/NoWindButRain/IMPure}

    An adaptive preconditioning scheme for the self-consistent field iteration and generalized stacking-fault energy calculations

    Full text link
    The generalized stacking-fault energy (GSFE) is the fundamental but key parameter for the plastic deformation of materials. We perform first-principles calculations by full-potential linearized augmented planewave (FLAPW) method to evaluate the GSFE based on the single-shift and triple-shift supercell models. Different degrees of defects are introduced in the two models, thereby affecting the convergence of the self-consistent field (SCF) iterations. We present an adaptive preconditioning scheme which can identify the long-wavelength divergence behavior of the Jacobian during the SCF iteration and automatically switch on the Kerker preconditioning to accelerate the convergence. We implement this algorithm in Elk-7.2.42 package and calculate the GSFE curves for Al, Cu, and Si (111) plane direction. We found that the single-shift and triple-shift supercell models have equivalent calculation accuracy and are within the experimental data uncertainty. For computational efficiency, the triple-shift supercell model is preferable due to its better convergence, exhibiting lower degree of defect compared to the single-shift supercell model.Comment: 10 pages, 8 figure

    Prediction of the anti-inflammatory effects of bioactive components of a Hippocampus species-based TCM formulation on chronic kidney disease using network pharmacology

    Get PDF
    Purpose: To systematically study and predict the therapeutic targets and signaling pathways of Hippocampus (HPC) against chronic kidney disease (CKD) using network pharmacology.Methods: By combining database mining, literature searching, screening of disease targets, and network construction, the effects of various components of HPC on several proteins related to CKD were predicted and the active compounds were screened. Genes related to the selected compounds were linked using the SEA database. The correlation between CKD and genes was determined using OMIM, DisGenNet, and GeneCards databases. Pathway-enrichment analyses of overlapping genes were undertaken using online databases.Results: A total of 144 compounds in HPC were identified. Analyses of clusters suggest that the active components of HPC and the target genes against the inflammation caused by CKD were due to 10 compounds and 25 genes. Metascape results showed that these HPC targets are related to CKD inflammation.Conclusion: The active components of HPC and the target genes against CKD inflammation are involved in multiple signaling pathways, such as AGE-RAGE, TLR, TNF, and NF-κB. This work provides scientific evidence to support the clinical use of HPC against CKD

    A high-resolution map of reactive nitrogen inputs to China

    Get PDF
    To feed an increasingly affluent population, reactive nitrogen (Nr) inputs to China’s lands and waters have substantially increased over the past century. Today, China’s Nr emissions account for over one third of global total emissions, leading to serious environmental pollution and health damages. Quantifying the spatial variability of Nr inputs is crucial for the identification of intervention points to mitigate Nr pollution, which, however, is not well known. Here, we present a database describing Nr inputs to China for the year 2017 with a 1 km × 1 km resolution, considering land use and Nr sources, compiled by using the CHANS model. Results show that the North China Plain, the Sichuan Basin and the Middle-Lower Yangtze River Plain are hotspots of Nr inputs, where per hectare Nr input is an order of magnitude higher than that in other regions. Cropland and surface water bodies receive much higher Nr inputs than other land use types. This unique database will provide basic data for research on environmental health and global change modelling

    RegionBLIP: A Unified Multi-modal Pre-training Framework for Holistic and Regional Comprehension

    Full text link
    In this work, we investigate extending the comprehension of Multi-modal Large Language Models (MLLMs) to regional objects. To this end, we propose to extract features corresponding to regional objects as soft prompts for LLM, which provides a straightforward and scalable approach and eliminates the need for LLM fine-tuning. To effectively extract regional features from regular image features and irregular point cloud features, we present a novel and unified position-assisted feature extraction module. Furthermore, training an MLLM from scratch is highly time-consuming. Thus, we propose incrementally extending existing pre-trained MLLMs to comprehend more modalities and the regional objects of those modalities. Specifically, we freeze the Q-Former from BLIP-2, an impressive MLLM, and optimize the modality-specific Lora parameters in Q-Former and LLM for each newly introduced modality. The freezing of the Q-Former eliminates the need for extensive pre-training on massive image-text data. The freezed Q-Former pre-trained from massive image-text data is also beneficial for the pre-training on image-region-text data. We name our framework RegionBLIP. We pre-train RegionBLIP on image-region-text, point-cloud-text, and point-cloud-region-text data. Experimental results verify that \Ours{} can preserve the image comprehension capability of BILP-2 and further gain a comprehension of the newly introduced point cloud modality and regional objects. The Data, Code, and Pre-trained models will be available at https://github.com/mightyzau/RegionBLIP

    Ensemble Quadratic Assignment Network for Graph Matching

    Full text link
    Graph matching is a commonly used technique in computer vision and pattern recognition. Recent data-driven approaches have improved the graph matching accuracy remarkably, whereas some traditional algorithm-based methods are more robust to feature noises, outlier nodes, and global transformation (e.g.~rotation). In this paper, we propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods. In the GNN framework, we transform traditional graph-matching solvers as single-channel GNNs on the association graph and extend the single-channel architecture to the multi-channel network. The proposed model can be seen as an ensemble method that fuses multiple algorithms at every iteration. Instead of averaging the estimates at the end of the ensemble, in our approach, the independent iterations of the ensembled algorithms exchange their information after each iteration via a 1x1 channel-wise convolution layer. Experiments show that our model improves the performance of traditional algorithms significantly. In addition, we propose a random sampling strategy to reduce the computational complexity and GPU memory usage, so the model applies to matching graphs with thousands of nodes. We evaluate the performance of our method on three tasks: geometric graph matching, semantic feature matching, and few-shot 3D shape classification. The proposed model performs comparably or outperforms the best existing GNN-based methods.Comment: Accepted by IJCV in 202
    corecore