14 research outputs found

    Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites

    Get PDF
    Based on the biodegradable material-polyethylene glycol (PEG)-as the plasticizer, oxidized wood flour (OWF) as the charring agent for polylactide (PLA), a series flame-retardant PLA biocomposites were prepared via melt-compounding and hot-compression. The effect of OWF on the thermal, mechanical and flame retardant properties of biocomposites was investigated systemically. We have found that after the incorporation of PEG and OWF with 10Âżwt% into PLA, the biocomposite showed higher tensile elongation than pure PLA. Furthermore, the presence of OWF and ammonium polyphosphate (APP) imparted the biocomposite good flame-retardant performance, shown a remarkable reduction on the peak of heat release rate (PHRR), improved LOI value and passed UL94 V-0 rating. Moreover, Scanning electron microscopy-energy dispersive spectra (SEM/EDS) and thermogravimetric analysis coupled with infrared spectrometer (TG-FTIR) were also performed to understand the flame retardant mechanism. These results proved that OWF could be as new functional filler for polymer composites to further improve their flame retardancy.Peer ReviewedPostprint (published version

    High Oxygen Barrier Property of Poly(propylene carbonate)/Polyethylene Glycol Nanocomposites with Low Loading of Cellulose Nanocrytals

    No full text
    Bionanocomposites of poly­(propylene carbonate) (PPC) enhanced by cellulose nanocrytals (CNCs) are prepared via a two-step process using polyethylene glycol (PEG) as a carrier. Interfacial interaction among PPC, PEG, and CNCs, dispersion of CNCs in bionanocomposites, thermal properties, mechanical behavior, oxygen barrier property, and rheological responses are investigated. The obtained PPC/PEG/CNC nanocomposites display obvious improvement of barrier properties by adding an extremely low loading of CNCs. O<sub>2</sub> permeability is decreased by more than 76% at CNC loading of 0.3 wt %. The Cussler model works better to predict gas barrier for nanocomposites. TEM results show that CNC is well dispersed in the matrix, and the introduction of CNC remarkably increases the tensile strength and storage modulus of PPC. Interestingly, elongation at break of the PPC/PEG/CNC nanocomposite remains above 580%. Moreover, the inclusion of CNCs increases the thermal stability and initial decomposition temperature (<i>T</i><sub>–5%</sub>) of nanocomposites. The <i>T</i><sub>–5%</sub> for the PPC/PEG/0.7CNC nanocomposite is approximately 246.5 °C, which is increased by 17.1% compared with that of pure PPC (210.5 °C). This makes PPC/PEG/CNC nanocomposites a very promising degradable material for food packaging applications

    Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites

    No full text
    Based on the biodegradable material-polyethylene glycol (PEG)-as the plasticizer, oxidized wood flour (OWF) as the charring agent for polylactide (PLA), a series flame-retardant PLA biocomposites were prepared via melt-compounding and hot-compression. The effect of OWF on the thermal, mechanical and flame retardant properties of biocomposites was investigated systemically. We have found that after the incorporation of PEG and OWF with 10Âżwt% into PLA, the biocomposite showed higher tensile elongation than pure PLA. Furthermore, the presence of OWF and ammonium polyphosphate (APP) imparted the biocomposite good flame-retardant performance, shown a remarkable reduction on the peak of heat release rate (PHRR), improved LOI value and passed UL94 V-0 rating. Moreover, Scanning electron microscopy-energy dispersive spectra (SEM/EDS) and thermogravimetric analysis coupled with infrared spectrometer (TG-FTIR) were also performed to understand the flame retardant mechanism. These results proved that OWF could be as new functional filler for polymer composites to further improve their flame retardancy.Peer Reviewe

    Preparation of Novel c‑6 Position Carboxyl Corn Starch by a Green Method and Its Application in Flame Retardance of Epoxy Resin

    No full text
    Novel c-6 position oxidized corn starch (OST) with high carboxyl content (26.3–54.5%) was prepared by a green method, using hydrogen peroxide as the oxidant. The as-obtained OSTs were then used as flame-retardant carbon sources with microencapsulated ammonium polyphosphate (MFAPP) in epoxy resin (EP). Compared to EP, the obtained EP/MFAPP/OST composites exhibit significantly enhanced flame retardancy. The introduction of only 6.25 wt % OSTs and 6.25 wt % MFAPP results in remarkably increased limiting oxygen index and decreased heat release rate, and all composites can reach UL94 V-0 rating. Thermogravimetric analyses and cone calorimetry results suggest both OSTs and MFAPP have good catalytic charring effects, and the increased carboxyl content benefits the char formation of the composites. Because of the formation of compact char on the sample surface during combustion, the transfer of oxygen, heat, and flammable gas products is inhibited; the flame retardancy of EP/MFAPP/OST composites is thus remarkably enhanced

    Potential lncRNA regulatory mechanisms in diabetes and its complications

    No full text
    Long noncoding RNAs (lncRNA) are transcripts longer than 200 nucleotides without protein-coding potential. Though these molecules were initially considered as “junk-products” of transcription without biological meaning, recent research advancements have shown that lncRNA plays an important role not only in cellular processes such as proliferation, differentiation and metabolism, but also in pathological processes of cancers,diabetes, and neurodegenerative diseases.In this review, we focus on the potential regulatory roles of lncRNA in diabetes and diabetic complications.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Novel Flame-Actuated Soft Actuator Based on a Multilayer Liquid Crystal Elastomer/Hydrogel Composite

    No full text
    A novel flame-actuated soft actuator based on a multilayer liquid crystal elastomer/hydrogel composite was fabricated in this work. Flame is a preferable external stimulus over light, heat, and electricity in terms of its abundant accessibility in a fire scenario. Nevertheless, employing flame as the external stimulus introduces novel challenges for soft actuator materials as they must possess incombustible properties. Here, hydrogel layers are grafted on both surfaces of the liquid crystal elastomer (LCE), resulting in the fabrication of a trilayered LCE-hydrogel composite. The LCE-hydrogel composite demonstrates remarkable flame retardancy, shape memory performance, and tailorable surface adhesion. The hydrogel’s remarkable water absorption and heat insulation properties confer excellent flame retardancy to the composite, preventing ignition for at least 10 s during the open flame test. The shape memory performance is attributed to the orientation of the internal LCE layer and the flexibility of the external hydrogel layers. The surface adhesion of the hydrogel layers is tailored by adjusting their water content. As the water content decreases from 100 to 60%, the surface adhesion energy increases from 6.2 to 70.3 J/m2. A flame-actuated, clip-like soft robot capable of cyclically grasping and releasing objects was constructed, showcasing its promising application potential. This work presents an unprecedented flame-actuated LCE-based composite for the first time, which offers a fresh perspective for researchers to investigate alternative actuation approaches in the field of soft robotics

    Novel Flame-Actuated Soft Actuator Based on a Multilayer Liquid Crystal Elastomer/Hydrogel Composite

    No full text
    A novel flame-actuated soft actuator based on a multilayer liquid crystal elastomer/hydrogel composite was fabricated in this work. Flame is a preferable external stimulus over light, heat, and electricity in terms of its abundant accessibility in a fire scenario. Nevertheless, employing flame as the external stimulus introduces novel challenges for soft actuator materials as they must possess incombustible properties. Here, hydrogel layers are grafted on both surfaces of the liquid crystal elastomer (LCE), resulting in the fabrication of a trilayered LCE-hydrogel composite. The LCE-hydrogel composite demonstrates remarkable flame retardancy, shape memory performance, and tailorable surface adhesion. The hydrogel’s remarkable water absorption and heat insulation properties confer excellent flame retardancy to the composite, preventing ignition for at least 10 s during the open flame test. The shape memory performance is attributed to the orientation of the internal LCE layer and the flexibility of the external hydrogel layers. The surface adhesion of the hydrogel layers is tailored by adjusting their water content. As the water content decreases from 100 to 60%, the surface adhesion energy increases from 6.2 to 70.3 J/m2. A flame-actuated, clip-like soft robot capable of cyclically grasping and releasing objects was constructed, showcasing its promising application potential. This work presents an unprecedented flame-actuated LCE-based composite for the first time, which offers a fresh perspective for researchers to investigate alternative actuation approaches in the field of soft robotics

    Novel Flame-Actuated Soft Actuator Based on a Multilayer Liquid Crystal Elastomer/Hydrogel Composite

    No full text
    A novel flame-actuated soft actuator based on a multilayer liquid crystal elastomer/hydrogel composite was fabricated in this work. Flame is a preferable external stimulus over light, heat, and electricity in terms of its abundant accessibility in a fire scenario. Nevertheless, employing flame as the external stimulus introduces novel challenges for soft actuator materials as they must possess incombustible properties. Here, hydrogel layers are grafted on both surfaces of the liquid crystal elastomer (LCE), resulting in the fabrication of a trilayered LCE-hydrogel composite. The LCE-hydrogel composite demonstrates remarkable flame retardancy, shape memory performance, and tailorable surface adhesion. The hydrogel’s remarkable water absorption and heat insulation properties confer excellent flame retardancy to the composite, preventing ignition for at least 10 s during the open flame test. The shape memory performance is attributed to the orientation of the internal LCE layer and the flexibility of the external hydrogel layers. The surface adhesion of the hydrogel layers is tailored by adjusting their water content. As the water content decreases from 100 to 60%, the surface adhesion energy increases from 6.2 to 70.3 J/m2. A flame-actuated, clip-like soft robot capable of cyclically grasping and releasing objects was constructed, showcasing its promising application potential. This work presents an unprecedented flame-actuated LCE-based composite for the first time, which offers a fresh perspective for researchers to investigate alternative actuation approaches in the field of soft robotics

    Novel Flame-Actuated Soft Actuator Based on a Multilayer Liquid Crystal Elastomer/Hydrogel Composite

    No full text
    A novel flame-actuated soft actuator based on a multilayer liquid crystal elastomer/hydrogel composite was fabricated in this work. Flame is a preferable external stimulus over light, heat, and electricity in terms of its abundant accessibility in a fire scenario. Nevertheless, employing flame as the external stimulus introduces novel challenges for soft actuator materials as they must possess incombustible properties. Here, hydrogel layers are grafted on both surfaces of the liquid crystal elastomer (LCE), resulting in the fabrication of a trilayered LCE-hydrogel composite. The LCE-hydrogel composite demonstrates remarkable flame retardancy, shape memory performance, and tailorable surface adhesion. The hydrogel’s remarkable water absorption and heat insulation properties confer excellent flame retardancy to the composite, preventing ignition for at least 10 s during the open flame test. The shape memory performance is attributed to the orientation of the internal LCE layer and the flexibility of the external hydrogel layers. The surface adhesion of the hydrogel layers is tailored by adjusting their water content. As the water content decreases from 100 to 60%, the surface adhesion energy increases from 6.2 to 70.3 J/m2. A flame-actuated, clip-like soft robot capable of cyclically grasping and releasing objects was constructed, showcasing its promising application potential. This work presents an unprecedented flame-actuated LCE-based composite for the first time, which offers a fresh perspective for researchers to investigate alternative actuation approaches in the field of soft robotics
    corecore