419 research outputs found

    An edge-directed interpolation method for fetal spine MR images

    Get PDF
    Abstract Background Fetal spinal magnetic resonance imaging (MRI) is a prenatal routine for proper assessment of fetus development, especially when suspected spinal malformations occur while ultrasound fails to provide details. Limited by hardware, fetal spine MR images suffer from its low resolution. High-resolution MR images can directly enhance readability and improve diagnosis accuracy. Image interpolation for higher resolution is required in clinical situations, while many methods fail to preserve edge structures. Edge carries heavy structural messages of objects in visual scenes for doctors to detect suspicions, classify malformations and make correct diagnosis. Effective interpolation with well-preserved edge structures is still challenging. Method In this paper, we propose an edge-directed interpolation (EDI) method and apply it on a group of fetal spine MR images to evaluate its feasibility and performance. This method takes edge messages from Canny edge detector to guide further pixel modification. First, low-resolution (LR) images of fetal spine are interpolated into high-resolution (HR) images with targeted factor by bi-linear method. Then edge information from LR and HR images is put into a twofold strategy to sharpen or soften edge structures. Finally a HR image with well-preserved edge structures is generated. The HR images obtained from proposed method are validated and compared with that from other four EDI methods. Performances are evaluated from six metrics, and subjective analysis of visual quality is based on regions of interest (ROI). Results All these five EDI methods are able to generate HR images with enriched details. From quantitative analysis of six metrics, the proposed method outperforms the other four from signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM) and mutual information (MI) with seconds-level time consumptions (TC). Visual analysis of ROI shows that the proposed method maintains better consistency in edge structures with the original images. Conclusions The proposed method classifies edge orientations into four categories and well preserves structures. It generates convincing HR images with fine details and is suitable in real-time situations. Iterative curvature-based interpolation (ICBI) method may result in crisper edges, while the other three methods are sensitive to noise and artifacts

    Economic driving characteristics of agricultural non-point source pollution and prevention suggestions: a case study from Shandong province in China

    Get PDF
    Agricultural non-point source pollution (ANSP) constraints on the development of the agricultural economy, grasp the interaction between the two, and develop targeted prevention and control policies in accordance with the evolution of different stages of the characteristic is essential. This study examines the economic characteristics of ANSP in Shandong Province to propose targeted countermeasures. Selected the time series data of Shandong Province from 2000 to 2020 to test the Environmental Kuznets Curve (EKC) characteristics between ANSP and agricultural economic growth (AEG), and the Vector Error Correction model (VECM) is used further to explore the dynamic relationship and mechanism. We validate the existence of an Inverted U-shaped EKC in Shandong Province, and the inflection points of pesticides, fertilizers, and agricultural films were reached in 2007 and 2008. The changes in pesticide loss and fertilizer loss have a positive impact on the dynamics of AEG in the short term, but there is an incremental inhibition in the long term. The dynamic effect of the impulse response diagram between the amount of agricultural film residues and AEG all shows a positive impact. The average explanatory contribution of pesticide loss, fertilizer loss, and agricultural film residue to AEG decreases by 12.14%, 7.7%, and 3%, respectively. Therefore, policy suggestions are proposed to realize the coordinated development of ANSP and economic development

    Novel, rosin‐based, hydrophobically modified cationic polyacrylamide for kaolin suspension flocculation

    Full text link
    A novel, hydrophobically modified cationic polyacrylamide (HMPAM) was synthesized via the copolymerization of acrylamide, diallyl dimethyl ammonium chloride (DMDAAC), and diallylmethyl dehydroabietic acid propyl ester ammonium bromide. Optimum conditions for preparing HMPAM were such that the amount of initiator was 0.075 wt % of the total monomer mass, the monomer concentration was 20 wt %, and the amount of DMDAAC was 18 mol % of the total monomer molar mass. HMPAM was characterized with an UV–visible spectrometer, 1H‐NMR, Ubbelohde viscometer, rotational viscometer, and rotational rheometer. HMPAM solutions exhibited strong hydrophobic associations, and the critical association concentration of the HMPAM aqueous solution was about 0.7 wt %; the HMPAM solutions also showed salt thickening and shear resistance. The surface morphologies of the freeze‐dried HMPAM samples (1 wt %) were also observed via scanning electron microscopy. Compared with unmodified cationic polyacrylamide, Synthesis of HMPAM‐0.5 exhibited a stronger flocculation capacity, and the optimal transmittance of the supernatants was above 95%. HMPAM‐0.5 showed significant flocculation performances for 3–4 and 3–5 wt % kaolin suspensions at 40 and 50 mg/L, respectively. Moreover, the flocculation performance was enhanced with the addition of NaCl and CaCl2. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46637.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144283/1/app46637.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144283/2/app46637_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144283/3/app46637-sup-0001-suppinfo1.pd

    Atomic Layer Deposition of High Quality HfO\u3csub\u3e2\u3c/sub\u3e Using In-Situ Formed Hydrophilic Oxide as an Interfacial Layer

    Get PDF
    High-quality HfO2 cannot be grown directly on Si substrate using atomic layer deposition (ALD), and an interfacial oxide layer is needed. Traditionally, interfacial oxide layer is formed either in SC1 solution (2 NH4OH: 4 H2O2: 200 H2O) or by ozonated water spraying. A highly hydrophilic SiO2 interfacial layer was in-situ formed in the ALD chamber using 1 cycle of ozone and water. The HfO2 deposited on this interfacial layer showed great growth linearity. The gate leakage current is comparable to that formed using chemical oxide as the interfacial layer. The capacitance-voltage (C-V) curves have negligible frequency dispersion and hysteresis, which suggest high quality in both the interface and electrical properties. The in-situ formation of hydrophilic interfacial layer have advantages over the traditional interfacial layer. This might be useful for formation of interfacial layer on sophisticated 3-D MOS structures such as FinFETs and nanowire FETs. In addition, the chemical oxidation step can be eliminated from the integrated circuits manufacturing processes, which is economically beneficial to the industry

    Electronic Properties of a New All-Inorganic Perovskite TlPbI\u3csub\u3e3\u3c/sub\u3e Simulated by the First Principles

    Get PDF
    All-inorganic perovskites have been recognized as promising photovoltaic materials. We simulated the perovskite material of TlPbI3 using ab initio electronic structure calculations. The band gap of 1.33 eV is extremely close to the theoretical optimum value. Compared TlPbI3 with CsPbI3, the total energy (−3980 eV) of the former is much lower than the latter. The partial density of states (PDOS) of TlPbI3 shows that a strong bond exists between Tl and I, resulting in the lower total energy and more stable existence than CsPbI3

    Near-Infrared Optical Absorption Enhanced in Black Silicon via Ag Nanoparticle-Induced Localized Surface Plasmon

    Get PDF
    Due to the localized surface plasmon (LSP) effect induced by Ag nanoparticles inside black silicon, the optical absorption of black silicon is enhanced dramatically in near-infrared range (1,100 to 2,500 nm). The black silicon with Ag nanoparticles shows much higher absorption than black silicon fabricated by chemical etching or reactive ion etching over ultraviolet to near-infrared (UV-VIS-NIR, 250 to 2,500 nm). The maximum absorption even increased up to 93.6% in the NIR range (820 to 2,500 nm). The high absorption in NIR range makes LSP-enhanced black silicon a potential material used for NIR-sensitive optoelectronic device. PACS 78.67.Bf; 78.30.Fs; 78.40.-q; 42.70.G

    Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO\u3csub\u3e2\u3c/sub\u3e as Electron Transport Layers

    Get PDF
    Lead halide perovskite solar cells (PSCs) appear to be the ideal future candidate for photovoltaic applications owing to the rapid development in recent years. The electron transport layers (ETLs) prepared by low-temperature process are essential for widespread implementation and large-scale commercialization of PSCs. Here, we report an effective approach for producing planar PSCs with Al3+ doped SnO2 ETLs prepared by using a low-temperature solution-processed method. The Al dopant in SnO2 enhanced the charge transport behavior of planar PSCs and increased the current density of the devices, compared with the undoped SnO2 ETLs. Moreover, the enhanced electrical property also improved the fill factors (FF) and power conversion efficiency (PCE) of the solar cells. This study has indicated that the low-temperature solution-processed Al-SnO2 is a promising ETL for commercialization of planar PSCs

    The additions of Nitrogen and Sulfur synergistically decrease the release of Carbon and Nitrogen from litter in a subtropical forest

    Get PDF
    Atmospheric nitrogen (N) and sulfur (S) deposition in subtropical forests has increased rapidly and the current level is very high, thus seriously affecting nutrient (e.g., N and phosphorus (P)) release from litter. However, the specific effects of S addition and its interaction with N on the release of carbon (C), N, and P from litter in subtropical evergreen broadleaved forests are unclear. Therefore, a two-year field experiment was performed using a litterbag method in a subtropical evergreen broadleaved forest in western China to examine the responses of litter decomposition and nutrient release to the control (CK), added N (+N), added S (+S), and added N and S (+NS) treatments. The results showed that the remaining litter mass, lignin, cellulose, C, N, P, and litter N/P ratio were higher, whereas the litter C/N ratio and soil pH were lower in the fertilization treatments than in CK. The annual decomposition coefficients (k-values) in the +N, +S, and +NS treatments were 0.384 ± 0.002, 0.378 ± 0.002, and 0.374 ± 0.001 year−1, respectively, which were significantly lower than the k-values in CK (0.452 ± 0.005 year−1, p < 0.05). The remaining mass, lignin, cellulose, C, and litter N/P ratio were higher, whereas the soil pH was lower in the +NS treatment than in the +N and +S. The interactive effects of N addition and S addition on the remaining litter lignin, cellulose, C, N, and P; the litter C/N, C/P, and N/P ratios; and the soil pH were significant (p < 0.05). In conclusion, the addition of N and S synergistically decreased the degradation of lignin and cellulose and the release of C and N and increased the litter N/P ratio, suggesting that external N and S inputs synergistically slowed the release of C and N from litter and exacerbated litter P limitation during decomposition in this forest
    • 

    corecore