75 research outputs found

    Diversity and Biomass of Understory Plants in Larix gmelinii Forest under Different Reconstruction Methods

    Get PDF
    The effects of different management measures on the undergrowth diversity of Larix gmelinii forests were determined. The undergrowth vegetation of Xing'an Larch forest under seven different transformation methods was investigated in the Chaocha Forest Farm of the Genhe Forestry Bureau in the northern Daxinganling Mountains. Community composition, structural characteristics, species diversity and biomass of seven different retrofitting methods and one control plot. The results showed that the species composition of Larix gmeliniii under 7 different transformation methods included 34 species of 30 genera and 21 families of shrubs, including 7 species, 7 genera and 7 species of shrub layer, and 20 species, 24 genera and 24 species of common species in the herb layer. The species with the largest proportion in the layer is bilberry, followed by Xing'an rhododendron, and the dominant species of herbaceous layer is quite different. In terms of diversity index, the diversity index of Xing'an larch forest under local tending artificial promotion natural regeneration and transformation measures was low (P<0.05); the study showed that the best tending thinning intensity was between 30% and 40%, different. The impact of the transformation method on the structure and diversity of understory vegetation in Larix gmelinii forest is not only related to the transformation, but also depends on the transformation measures taken

    Tree ring δ18O reveals no long-term change of atmospheric water demand since 1800 in the northern Great Hinggan Mountains, China

    Get PDF
    Global warming will significantly increase transpirational water demand, which could dramatically affect plant physiology and carbon and water budgets. Tree ring δ18O is a potential index of the leaf-to-air vapor-pressure deficit (VPD) and therefore has great potential for long-term climatic reconstruction. Here we developed δ18O chronologies of two dominant native trees, Dahurian larch (Larix gmelinii Rupr.) and Mongolian pine (Pinus sylvestris var. mongolica), from a permafrost region in the Great Hinggan Mountains of northeastern China. We found that the July–August VPD and relative humidity were the dominant factors that controlled tree ring δ18O in the study region, indicating strong regulation of stomatal conductance. Based on the larch and pine tree ring δ18O chronologies, we developed a reliable summer (July–August) VPD reconstruction since 1800. Warming growing season temperatures increase transpiration and enrich cellulose 18O, but precipitation seemed to be the most important influence on VPD changes in this cold region. Periods with stronger transpirational demand occurred around the 1850s, from 1914 to 1925, and from 2005 to 2010. However, we found no overall long-term increasing or decreasing trends for VPD since 1800, suggesting that despite the increasing temperatures and thawing permafrost throughout the region, forest transpirational demand has not increased significantly during the past two centuries. Under current climatic conditions, VPD did not limit growth of larch and pine, even during extremely drought years. Our findings will support more realistic evaluations and reliable predictions of the potential influences of ongoing climatic change on carbon and water cycles and on forest dynamics in permafrost regions

    Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness: Construction and Applications

    Get PDF
    We provide new zero-knowledge argument of knowledge systems that work directly for a wide class of language, namely, ones involving the satisfiability of matrix-vector relations and integer relations commonly found in constructions of lattice-based cryptography. Prior to this work, practical arguments for lattice-based relations either have a constant soundness error ( 2/3 ), or consider a weaker form of soundness, namely, extraction only guarantees that the prover is in possession of a witness that “approximates” the actual witness. Our systems do not suffer from these limitations. The core of our new argument systems is an efficient zero-knowledge argument of knowledge of a solution to a system of linear equations, where variables of this solution satisfy a set of quadratic constraints. This argument enjoys standard soundness, a small soundness error ( 1/poly ), and a complexity linear in the size of the solution. Using our core argument system, we construct highly efficient argument systems for a variety of statements relevant to lattices, including linear equations with short solutions and matrix-vector relations with hidden matrices. Based on our argument systems, we present several new constructions of common privacy-preserving primitives in the standard lattice setting, including a group signature, a ring signature, an electronic cash system, and a range proof protocol. Our new constructions are one to three orders of magnitude more efficient than the state of the art (in standard lattice). This illustrates the efficiency and expressiveness of our argument system

    Discovery and identification of potential biomarkers of papillary thyroid carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thyroid carcinoma is the most common endocrine malignancy and a common cancer among the malignancies of head and neck. Noninvasive and convenient biomarkers for diagnosis of papillary thyroid carcinoma (PTC) as early as possible remain an urgent need. The aim of this study was to discover and identify potential protein biomarkers for PTC specifically.</p> <p>Methods</p> <p>Two hundred and twenty four (224) serum samples with 108 PTC and 116 controls were randomly divided into a training set and a blind testing set. Serum proteomic profiles were analyzed using SELDI-TOF-MS. Candidate biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays.</p> <p>Results</p> <p>A total of 3 peaks (<it>m/z </it>with 9190, 6631 and 8697 Da) were screened out by support vector machine (SVM) to construct the classification model with high discriminatory power in the training set. The sensitivity and specificity of the model were 95.15% and 93.97% respectively in the blind testing set. The candidate biomarker with <it>m/z </it>of 9190 Da was found to be up-regulated in PTC patients, and was identified as haptoglobin alpha-1 chain. Another two candidate biomarkers (6631, 8697 Da) were found down-regulated in PTC and identified as apolipoprotein C-I and apolipoprotein C-III, respectively. In addition, the level of haptoglobin alpha-1 chain (9190 Da) progressively increased with the clinical stage I, II, III and IV, and the expression of apolipoprotein C-I and apolipoprotein C-III (6631, 8697 Da) gradually decreased in higher stages.</p> <p>Conclusion</p> <p>We have identified a set of biomarkers that could discriminate PTC from non-cancer controls. An efficient strategy, including SELDI-TOF-MS analysis, HPLC purification, MALDI-TOF-MS trace and LC-MS/MS identification, has been proved successful.</p
    • …
    corecore