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ABSTRACT 
 

Visibility is a key parameter of the atmospheric environment that has attracted increasing public attention. Despite its 
importance, very few descriptions of methods for predicting visibility using widely available information in the literature 
exist. In this paper, we derive and evaluate two compact algorithms (Models I and II) for measuring and predicting visibility 
using records of PM2.5, relative humidity (RH) and NO2 from 16 cities around the world. Models I and II are simplified 
algorithms derived from Pitchford’s algorithm. Our analysis shows that Model I is more consistent with the observations 
and can accurately predict changes in visibility. In a separate part of the study, the two algorithms are trained using data sets 
from individual cities. Better results are obtained when the models are trained with the data from London, Sydney and the 
Chinese mainland cities. Model II displays broader applicability when it is simulated using a single city’s data set. This study 
indicates that atmospheric visibility can be well quantified based on measurements of PM2.5, RH and NO2 concentrations. 
 
Keywords: Atmospheric visibility; Light extinction coefficient; Algorithm; PM2.5; Relative humidity; NO2. 
 
 
 
INTRODUCTION 
 

Atmospheric visibility is closely related to daily life. Low 
visibility can lead to traffic accidents, flight delays and visual 
impairment, which has attracted more and more public 
attention. Visibility is easily measured using laser radar, the 
photograph processing method and aerosol sampling method 
(Luo et al., 2005), but theoretical algorithms for quantifying 
and predicting visibility have only rarely received attention. 
Increased awareness about the negative impacts of visibility 
on human daily activity motivated the international community 
to develop new tools for visibility prediction. 

Using Koschmieder’s formula (Larson and Cass, 1989; Che 
et al., 2006), σext = –ln0.02/V, horizontal visibility (V, km) 
can be calculated by the atmospheric extinction coefficient 
(σext, km–1). Theoretical descriptions of σext have been derived 
by many people. A simple algorithm for estimating σext from 
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measured species concentrations was developed by Malm 
(1994). However, the accuracy and precision of the algorithm 
was very low. Later, based on a continuous monitoring 
campaign of 160 sites through the Interagency Monitoring 
of Protected Visual Environments Particle Monitoring 
Network (IMPROVE), a new algorithm for estimating light 
extinction was developed by Pitchford et al. (2007). The 
algorithm includes 15 variables (such as small sulfate, large 
sulfate, small nitrate, large nitrate, small organic mass, large 
organic mass, soil dust and sea salt). The Pitchford model is 
more consistent with the atmospheric aerosol literature and 
reduces bias at extremes of high and low light extinction. 
The improved performance of this model demonstrates that 
the prediction of visibility involves using data obtained by 
monitoring meteorological conditions and airborne pollutants. 
But there are plenty of variables in the model which 
contribute to lower applicability. 

In this paper, we present two compact algorithms (Model 
I and Model II) to predict visibility based on data for PM2.5, 
relative humidity and NO2 concentration in 16 cities around 
the world. As PM2.5, relative humidity and NO2 are easy to 
measure and predict, visibility can also be predicted by 
measurement of PM2.5, relative humidity and NO2 using the 
constructed algorithm. It is of great significance for reducing 
the cost of measuring visibility in the region where only 
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conventional pollutants and meteorological parameters are 
monitored. 

 
MATERIALS AND METHODS 
 
Model Assumption 

Koschmieder (Che et al., 2006) established an algebraic 
relationship between visibility and the light extinction 
coefficient (σext), which can be described as σext = –ln0.02/V 
= σsp + σap + σsg + σag. The atmospheric light extinction 
coefficient is the sum of particle scattering coefficient (σsp), 
particle absorption coefficient (σap), Rayleigh scattering 
coefficient (σsg) and gas absorption coefficient (σag). Light 
scattering and absorption by particles are the main reason for 
visibility degradation; it is directly affected by meteorological 
factors and airborne contaminants such as nitrate, sulfate, 
EC, OC, ammonium salt and secondary organic aerosol (Li 
et al., 2018; Yu et al., 2019). Particles’ contribution to the 
atmospheric extinction coefficient exceeds 95% (Cao et al., 
2012). Rayleigh scattering refers to the scattering of light 
from air molecules, and it depends on the density of 
atmosphere. Generally, it was assumed to be a constant 
value of 0.01 km–1 at sea level (Watson et al., 2002). Gas 
absorption is mainly contributed by NO2 which has small 
effect on the light extinction coefficient. 

Pitchford et al. (2007) have developed a precise algorithm 
(Eq. (1)) for calculating the light extinction caused by different 
processes: 
 
–ln0.02/V = 2.2fS (RH)[Small Sulfate] +  
4.8fL (RH)[Large Sulfate] + 2.4fS (RH)[Small Nitrate] + 
5.1fL (RH)[large Nitrate] + 2.8[Small Organic Mass] + 
6.1[Large Organic Mass] + 10[Elemental Carban] +  
[Soil dust] + 0.33ρ(NO2) + 1.7fSS (RH)[Sea Salt] + 
0.6[Coarse Mass] + Rayleigh Scattering (Site Specific) 
 (1) 
 
where RH (%) is relative humidity of ambient air; fS(RH), 
fL(RH) and fSS(RH) represent hygroscopic growth functions 
of small, large aerosol components and sea salt, respectively 
(all are unitless); ρ(NO2) represents the atmospheric mass 
concentration of NO2 (µg m–3). The other parameters, such 
as organic mass, sulfate, nitrate, elemental carbon, soil dust 
and so on, are specific chemical species in the aerosol, which 
are either obtained by direct measurements or estimation from 
other experimental parameters based on relevant references 
(Taylor and McLenna, 1985; Cao et al., 2005, 2012). The 
large and small fractions such as sulfate, nitrate and OM 
indicate different formation process through dry and aqueous 
mechanisms (John et al., 1990), which are calculated according 
to Cao et al. (2012). Component concentrations shown in 
brackets are in µg m–3. Despite the complexity of the 
parameters and manifestations of this equation, it can be 
summed up in two basic assumptions: 1) The total extinction 
effect of the atmosphere can be approximated as a combination 
of the extinction effects of the chemical components in dry 
air and the hygroscopic growth; 2) the extinction effect of 
each component follows Beer-Lambert law. 

However, the use of the algorithms requires many 

parameters, which hamper its applicability. Therefore, the main 
purpose of this paper is to simplify Pitchford’s algorithm. In 
Pitchford’s algorithm, the light extinction coefficient is the 
sum of particle scattering/absorption coefficient, Rayleigh 
scattering coefficient and gas absorption coefficient. Sulfate, 
nitrate, organic mass, elemental carbon, sea salt and coarse 
mass were the main hygroscopic aerosol components which 
contributed to the particle scattering/absorption coefficient. 
The particle scattering/absorption coefficients of above species 
were calculated separately. In the simplified algorithms, the 
hygroscopic aerosol components are a portion of PM2.5 which 
have been replaced by PM2.5. The water growth function 
[f(RH)] was replaced by aerosol humidification factor (1 – 
RH/100)b. PM2.5 is directly multiplied by (1 – RH/100)b in 
Model I. Regression analysis between PM2.5 and visibility 
has indicated that exponential equations can describe their 
algebraic relationship (Chan et al., 1999; Zhang et al., 2019). 
So PM2.5 was exponential conversed by exp(PM2.5/e2) in 
Model II. Rayleigh scattering is a site-specific parameter 
that contributes less than 2% to the value of the extinction 
coefficient (Cao et al., 2012). Therefore, this term was 
omitted. The last term of ρ(NO2) represents the gas absorption 
effect which is retained in the simplified algorithms. Based 
on these assumptions, two models were constructed and 
presented in Eqs. (2) and (3): 
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where PM2.5 represents the mass concentration of fine 
particles (in µg m–3); ρ(NO2) represents the atmospheric 
mass concentration of NO2 (in µg m–3); a1 and a2 represent 
the coefficient of the PM2.5; b1 and b2 describe the coefficients 
of humidification factor; c1 and c2 represent the coefficient 
of NO2; e2 is the correction factor of PM2.5; d1 and d2 are the 
error terms. The unknown coefficients of Model I (a1, b1, c1 
and d1) and Model II (a2, b2, c2, d2 and e2) are determined 
using iterative regression to fit the data from the 16 cities. 
 
Data Collection and Data Processing 

In order to derive a robust compact model, data for 
visibility, PM2.5, relative humidity and NO2 concentrations 
from 16 large cities around the world (Beijing, Guangzhou, 
Hangzhou, Ningbo, Xiamen, Shijiazhuang, Chongqing, 
Shanghai, Pinzhen, Xinbei, London, Sacramento, Toronto, 
New York, Coyhaique and Sydney) were downloaded from 
the Center of National Ministry of Environmental Protection 
of China (MEPC) (http://datacenter.mep.gov.cn/) and the 
OpenAQ air quality database (https://openaq.org). These data 
were processed by standardized procedures (Doyle et al., 2002; 
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Che et al., 2008; Ratto et al., 2012): (1) All variable units 
are converted into standard units; (2) the outlying data points 
are removed before regression; (3) the visibility values should 
be greater than 0.3 km, and less than the 99th percentile of the 
data; (4) data obtained during abnormal weather episodes 
such as precipitation, mist and dust storms were excluded. 
After the screening process, a total of 10,107 points have been 
retained for regression. 

 
Model Regression 

The original data was divided into two parts; the main part 
of the data set was used for model simulation and the 
remainder was used to validate the model. First, the unknown 
coefficients of Model I and Model II were obtained through 
iterative regression with all of the 16 cities’ data. The 
regression analyses were performed using the 1stOpt1.5 
software package (Liu et al., 2018; Marques et al., 2019). 
1stOpt1.5 is an automatically running optimized regression 
software which is developed by 7D Soft High Technology 
Inc. (China). When an equation with undetermined coefficients 
is inputted to the program, the software will automatically 
perform iterative regression until a converged solution is 
obtained thereby determining the best coefficient values. 
After determining the model parameters, sensitivity analysis 
was conducted using Monte Carlo random simulation method 
for the atmospheric visibility estimation. 

In order to compare the pros and cons of the two algorithms, 
the values of Akaike information criteria (AIC) and Bayesian 
information criteria (BIC) were calculated using Origin 2017. 
In statistics, the Akaike information criterion is an estimator 
of the relative quality of statistical models for a given set of 
data. It is based on the likelihood function. Given a collection 
of models for the data, AIC estimates the quality of each 
model, relative to each of the other models. Thus, AIC provides 
a means for model selection. Similar to Akaike information 
criteria, the Bayesian information criterion is also a criterion 
for model selection among a set of models. The model with 
the lowest AIC and BIC is preferred (Akaike et al., 1998; 
McDonald et al., 2016). The calculation formulas for AIC 
and BIC are shown in Eqs. (4) and (5) (Vrieze, 2012): 
 

( )ˆ2 2AIC Yk lκ τ= −  (4) 
 

( ) ( )ˆ2BIC Yk lg N lκ τ= −  (5)  
 
where kAIC and kBIC represent the AIC and BIC values 
(unitless), respectively; κ represents the number of estimated 
model parameters (unitless); τ̂  represents the optimized 
model parameters; ( )ˆYl τ  is the log of the likelihood of τ̂  
given the data of Y; N represents the number of observations 
(unitless). 
 
RESULTS AND DISCUSSION 
 
Visibility Distribution 

The aerosol contribution to “global dimming” was first 
reported as a strong decrease in visibility up to the middle 
1980s. Since that time, visibility has increased over Europe, 

consistent with reported European “brightening”, but has 
decreased substantially over south and east Asia, South 
America, Australia, and Africa, resulting in net global dimming 
over land (Wang et al., 2009; Vautard et al., 2009).  

Statistical summaries of the atmospheric visibility, PM2.5, 
RH and ρ(NO2) are shown in Table 1. During the study 
period, low visibility (less than 10 km) was observed in 
Hangzhou (7.86 km), Guangzhou (8.89 km), Chongqing 
(7.27 km), Shanghai (7.12 km) and Xinbei (6.16 km) with 
high PM2.5 levels (36.39–58.73 µg m–3). It is well known that 
PM2.5 is the main factor which contributes to visibility 
degradation. The visibility in Beijing (11.0 km), Shijiazhuang 
(10.7 km) and Coyhaique (12.2 km) were above 10 km, 
which exhibited higher PM2.5 concentrations compared with 
those in the low-visibility cites. It indicates that visibility is 
also affected by other conditions. Visibility varies with the 
degree of air pollution. Most Chinese cities are facing a 
downward trend in visibility due to the high PM2.5 level (Che 
et al., 2008; Molnar et al., 2008). Some cities such as Pinzhen, 
Sacramento, New York and Sydney exhibited relatively 
good visibility (above 15 km). The mean concentrations of 
PM2.5 (7.33–16.14 µg m–3) and ρ(NO2) (7.2–23.9 µg m–3) 
were also very low. In London, due to vehicle emissions 
including a greater fraction of diesel engines, a relatively high 
NO2 concentration of 88.9 µg m–3 was observed. However, 
NO2 has a very small effect on visibility. On the other hand, 
the PM2.5 concentration of 15.1 µg m–3 was very low, and 
the visibility is also above 15 km. 
 
Model Simulation with Combined Data 

The coefficients for the two models were determined 
using all of the 16 cities’ data by Levenberg-Marquardt and 
Universal Global Optimization methods (convergence 
criterion: 1.00E-10; maximum iterations number: 1000; 
repeat number: 30; control iterations number: 20). The 
running codes for each model were shown in Table 2. Both 
Model I and Model II achieved convergence after 17 and 40 
iterations. The obtained equations are listed in Table 3. The 
adjusted R2 of Model I (0.58) is a little higher than Model II 
(R2 = 0.57) and the AIC value of 26,909 and BIC value of 
26,945 were smaller than the corresponding values in Model 
II. Preliminary inspection indicated that Model I is the 
optimal algorithm for visibility prediction.  

Sensitivity analysis was conducted using Monte Carlo 
random simulation method for the atmospheric visibility 
estimation (Fig. 1). It shows that the combination of most 
significant contributors, PM2.5 and RH, could account for 
97–98% of the visibility degradation. In particular, the 
contributions of PM2.5 to the variance of visibility were 72% 
and 66% from Model I and Model II prediction, respectively. 
In contrast, the concentration of NO2 showed a negligible 
influence on the variance of visibility, with uncertainty 
contributions of 2% and 3% from Model I and Model II, 
respectively. The sensitivity analysis indicated that decreasing 
the PM2.5 concentration and RH can significantly improve 
atmospheric visibility. 

Model I and II are four-dimensional functions; it is hard 
to directly draw the function surface. However, we note that 
NO2 has a limited influence on visibility; the main contributors  
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Table 2. The running codes for model regression by 1stOpt1.5 software. 
Name Code 
Model I Title: Model I; 

Parameters: a, b, c, d; 
Variable: V, R, P, N; 
Function V = –ln0.02/(a × P × ((1 – R × 0.01)b) + c × N + d); 
Data: 
13.59a  75.66b  1.90c  17.10d 
10.10 85.15  2.10  19.00 
12.38  75.00  2.10  11.40 

⁝ ⁝ ⁝ ⁝ 
Model II Title: Model II; 

Parameters: a, b, c, d, e; 
Variable: V, R, P, N; 
Function V = –ln0.02/(a × exp(P/e) × ((1 – R × 0.01)b) + c × N + d); 
Data: 
13.59  75.66  1.90  17.10 
10.10  85.15  2.10  19.00 
12.38  75.00  2.10  11.40 

⁝ ⁝ ⁝ ⁝ 
a The 1st column is visibility. b The 2nd column is relative humidity. c The 3rd column is PM2.5. d The 4th column is ρ(NO2). 
V: visibility, km; R: relative humidity, %; P: PM2.5, µg m–3; N: ρ(NO2), µg m–3. 
 

Table 3. The functions of the two models in this study and that used in Pitchford et al. (2007). 
Name Algorithm R2 kAIC kBIC 
Model I σext = –ln0.02/V 

= 0.00143PM2.5(1 – 0.01RH)–1.10731 – 0.00073ρ(NO2)  
+ 0.21376 

0.58 26,909 26,945 

Model II σext = –ln0.02/V 
= 0.06561exp(PM2.5/50.19809) × (1 – 0.01RH)–0.59352 
– 0.00075ρ(NO2) + 0.11489 

0.57 27,070 27,114 

Pitchford Eq. (1) 0.86a - - 
a The R2 correlation coefficient of 0.86 is obtained from reference using IMPROVE particle speciation data. 
 

 
Fig. 1. Sensitivity analyses of PM2.5, RH and NO2 on atmospheric visibility predicted by Model I and Model II. 

 
for visibility degradation are PM2.5 components (Tao et al., 
2007). For the purpose of discussion, ρ(NO2) was omitted and 
the models become three-dimensional. The three-dimensional 
surfaces of Model I and II are shown in Fig. 2. The surfaces 

are extended upwards with visibility increasing with decreasing 
PM2.5 and humidity. The Model I surface is in the middle of the 
scattered data points which indicate a satisfactory simulation 
result. However, it should be noted that the uncertainty 
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contribution of ρ(NO2) from Model II (3%) is slightly higher 
than that from Model II (2%). Without considering the 
contribution of ρ(NO2), the surface of Model II deviates to a 
slightly bigger extent from the dense area compared with the 
surface of Model I. Both Model I and II have good predictive 
results for visibilities less than 20 km. Large deviations 
appear when visibility is higher than 20 km. It can be seen 
that the models derived from the combined data of 16 cities 
have certain generality, especially given the different 
atmospheric environments represented within the data set. An 
evaluation for the predictive models obtained with combined 

data by the single-city data was performed, and the result 
(Table S1) showed that the adjusted R2 of the two models in 
Chinese mainland cities (Beijing, Guangzhou, Hangzhou, 
Ningbo, Xiamen, Shijiazhuang, Chongqing, Shanghai) and 
London are higher than those obtained in other cities. The 
prediction results in most cites are satisfied, which suggested 
the adaptability of these two models. 

In comparison, the R2 in the algorithm of Pitchford (Table 3), 
with the value of 0.86, was obtained from the IMPROVE 
particle speciation data, which is higher than the results 
obtained in this study. The Pitchford algorithm is theoretical 

 

 
Fig. 2. Three-dimensional surface diagrams of Model I and II based on fits to the data from the 16 cities: (a) Model I, 
(b) counterclockwise rotation of the Model I surface by 180°, (c) Model II, (d) counterclockwise rotation of the Model II 
surface by 180°. Scatter points in different colors represent the observed data from different cities. 
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prediction of visibility with 15 entangled variables, which 
may over-describe the system (Kelly et al., 2013). While the 
algorithms derived in this study only have 3 variables (PM2.5, 
RH and ρ(NO2)), the advantage is that there are fewer variables 
and these variables are easier to obtain. The estimated 
visibility value is acceptable for many purposes.  
 
Simulation with Single-city Data 

The equations of Model I and II were derived with single-
city data using 1stOpt software, following the same protocol. 
The values of the coefficients for the two models for each city 
are shown in Tables S2 and S3. The adjusted R2 (Table 4) of 
the two models in Beijing, Guangzhou, Hangzhou, Ningbo, 
Xiamen, Shijiazhuang, Chongqing, Shanghai and London 
are higher than other cities (Model I: 0.62–0.86; Model II: 
0.65–0.87; p < 0.01). The results are comparable to those 
obtained by Pitchford et al. (2007). Compared with Model 
I, Model II has higher R2 in many cities such as Guangzhou, 
Xiamen, Coyhaique, Xinbei, Pinzhen, Sacramento, Toronto, 
New York and Sydney. It indicated that Model II has 
broader applicability when simulated with a single-city data 
set. Both Model I and Model II have exhibited lower 
adjusted R2 (0.19–0.41) in Coyhaique, Xinbei, Pinzhen, 
Sacramento, Toronto and New York. Using the models to 
predict the visibility of the above cities is not very accurate. 
The visibility of these cities might be related to other factors 
(e.g., unique aerosol composition, and fraction of PM2.5 in 
PM10) in addition to PM2.5, relative humidity and NO2 
concentration (Park et al., 2018). Besides, it can be found 
that the two models derived from the single-city data show 
higher adjusted R2, which were better than those obtained 
with combined data. 

Comparisons between model-predicted visibility and 
observed visibility of these cities are shown in Fig. 3. The 
results in London and mainland China cities were better than 
other cities. Xinbei and Pinzhen are located in Taiwan which 

are near mainland China, but the predicted results were not 
satisfactory. The prediction results of Sacramento, Coyhaique 
and Toronto have large deviations due to the small data 
volume. 

 
CONCLUSIONS 
 

This study proposes two algorithms using PM2.5, RH and 
NO2 as independent variables for simulating the visibility. 
According to the simulation based on the combined data of 
16 cities, Model I exhibits slightly better applicability. 
Model II displays broader applicability when it is simulated 
using a single city’s data set. The model predictions are 
satisfactory for Beijing, Guangzhou, Hangzhou, Ningbo, 
Xiamen, Shijiazhuang, Chongqing, Shanghai and London 
(Model I: R2 = 0.62–0.86; Model II: R2 = 0.65–0.87). Lower 
adjusted values for R2 (0.19–0.41) are obtained for Coyhaique, 
Xinbei, Pinzhen, Sacramento, Toronto and New York. 

The simulation results confirm that flexible and simpler 
algorithms can generally produce reliable predictions based 
on measurements of PM2.5, RH and ρ(NO2). As far as we 
know, this is the first study to propose simplified algorithms 
with only 3 variables for visibility prediction. Some limitations 
in the performance should be noted, partly because the amount 
of data available for some of the cities was insufficient. 
Increasing the volume of the data set is necessary in order to 
improve the models’ adaptability and correlatability in future 
work. 
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Table 4. The correlation coefficients and RSS results of the two models based on city-specific data with observations for 
each city. 

City Model I Model II N R2 RSS R2 RSS 
Beijing 0.70 7538.1 0.72 6910.6 557 
Hangzhou 0.86 1505.3 0.87 1278.4 514 
Guangzhou 0.74 1307.1 0.76 1206.6 342 
Ningbo 0.74 4807.9 0.72 5292.8 619 
Xiamen 0.66 2158.0 0.68 2059.9 395 
Shijiazhuang 0.77 8547.0 0.77 8780.6 692 
Chongqing 0.82 1403.3 0.81 1445.5 682 
Shanghai 0.74 345.9 0.73 354.5 385 
Xinbei 0.38 3156.0 0.39 3112.9 1198 
Pinzhen 0.28 28,149.2 0.31 26,723.8 460 
London 0.62 3893.3 0.65 3573.9 612 
Toronto 0.36 1696.2 0.39 1629.7 700 
New York 0.35 2165.4 0.41 1950.6 674 
Sacramento 0.29 2705.9 0.31 2611.8 1350 
Coyhaique 0.19 4545.6 0.38 2977.2 370 
Sydney 0.46 13,473.6 0.62 9483.5 557 

RSS: residual sum of squares; N: number of data set samples. 
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Fig. 3. Comparison between predicted visibility and observed visibility for single-city data simulations. 

 
SUPPLEMENTARY MATERIAL 
 

Supplementary data associated with this article can be 
found in the online version at http://www.aaqr.org. 
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