84 research outputs found

    GAN-based Virtual Re-Staining: A Promising Solution for Whole Slide Image Analysis

    Full text link
    Histopathological cancer diagnosis is based on visual examination of stained tissue slides. Hematoxylin and eosin (H\&E) is a standard stain routinely employed worldwide. It is easy to acquire and cost effective, but cells and tissue components show low-contrast with varying tones of dark blue and pink, which makes difficult visual assessments, digital image analysis, and quantifications. These limitations can be overcome by IHC staining of target proteins of the tissue slide. IHC provides a selective, high-contrast imaging of cells and tissue components, but their use is largely limited by a significantly more complex laboratory processing and high cost. We proposed a conditional CycleGAN (cCGAN) network to transform the H\&E stained images into IHC stained images, facilitating virtual IHC staining on the same slide. This data-driven method requires only a limited amount of labelled data but will generate pixel level segmentation results. The proposed cCGAN model improves the original network \cite{zhu_unpaired_2017} by adding category conditions and introducing two structural loss functions, which realize a multi-subdomain translation and improve the translation accuracy as well. % need to give reasons here. Experiments demonstrate that the proposed model outperforms the original method in unpaired image translation with multi-subdomains. We also explore the potential of unpaired images to image translation method applied on other histology images related tasks with different staining techniques

    US-net for robust and efficient nuclei instance segmentation

    Full text link
    We present a novel neural network architecture, US-Net, for robust nuclei instance segmentation in histopathology images. The proposed framework integrates the nuclei detection and segmentation networks by sharing their outputs through the same foundation network, and thus enhancing the performance of both. The detection network takes into account the high-level semantic cues with contextual information, while the segmentation network focuses more on the low-level details like the edges. Extensive experiments reveal that our proposed framework can strengthen the performance of both branch networks in an integrated architecture and outperforms most of the state-of-the-art nuclei detection and segmentation networks.Comment: To appear in ISBI 201

    Hierarchical Point-based Active Learning for Semi-supervised Point Cloud Semantic Segmentation

    Full text link
    Impressive performance on point cloud semantic segmentation has been achieved by fully-supervised methods with large amounts of labelled data. As it is labour-intensive to acquire large-scale point cloud data with point-wise labels, many attempts have been made to explore learning 3D point cloud segmentation with limited annotations. Active learning is one of the effective strategies to achieve this purpose but is still under-explored. The most recent methods of this kind measure the uncertainty of each pre-divided region for manual labelling but they suffer from redundant information and require additional efforts for region division. This paper aims at addressing this issue by developing a hierarchical point-based active learning strategy. Specifically, we measure the uncertainty for each point by a hierarchical minimum margin uncertainty module which considers the contextual information at multiple levels. Then, a feature-distance suppression strategy is designed to select important and representative points for manual labelling. Besides, to better exploit the unlabelled data, we build a semi-supervised segmentation framework based on our active strategy. Extensive experiments on the S3DIS and ScanNetV2 datasets demonstrate that the proposed framework achieves 96.5% and 100% performance of fully-supervised baseline with only 0.07% and 0.1% training data, respectively, outperforming the state-of-the-art weakly-supervised and active learning methods. The code will be available at https://github.com/SmiletoE/HPAL.Comment: International Conference on Computer Vision (ICCV) 202

    Magnification-independent Histopathological Image Classification with Similarity-based Multi-scale Embeddings

    Full text link
    The classification of histopathological images is of great value in both cancer diagnosis and pathological studies. However, multiple reasons, such as variations caused by magnification factors and class imbalance, make it a challenging task where conventional methods that learn from image-label datasets perform unsatisfactorily in many cases. We observe that tumours of the same class often share common morphological patterns. To exploit this fact, we propose an approach that learns similarity-based multi-scale embeddings (SMSE) for magnification-independent histopathological image classification. In particular, a pair loss and a triplet loss are leveraged to learn similarity-based embeddings from image pairs or image triplets. The learned embeddings provide accurate measurements of similarities between images, which are regarded as a more effective form of representation for histopathological morphology than normal image features. Furthermore, in order to ensure the generated models are magnification-independent, images acquired at different magnification factors are simultaneously fed to networks during training for learning multi-scale embeddings. In addition to the SMSE, to eliminate the impact of class imbalance, instead of using the hard sample mining strategy that intuitively discards some easy samples, we introduce a new reinforced focal loss to simultaneously punish hard misclassified samples while suppressing easy well-classified samples. Experimental results show that the SMSE improves the performance for histopathological image classification tasks for both breast and liver cancers by a large margin compared to previous methods. In particular, the SMSE achieves the best performance on the BreakHis benchmark with an improvement ranging from 5% to 18% compared to previous methods using traditional features

    A Review of the "Digital Turn" in the New Literacy Studies

    Get PDF
    Digital communication has transformed literacy practices and assumed great importance in the functioning of workplace, recreational, and community contexts. This article reviews a decade of empirical work of the New Literacy Studies, identifying the shift toward research of digital literacy applications. The article engages with the central theoretical, methodological, and pragmatic challenges in the tradition of New Literacy Studies, while highlighting the distinctive trends in the digital strand. It identifies common patterns across new literacy practices through cross-comparisons of ethnographic research in digital media environments. It examines ways in which this research is taking into account power and pedagogy in normative contexts of literacy learning using the new media. Recommendations are given to strengthen the links between New Literacy Studies research and literacy curriculum, assessment, and accountability in the 21st century
    corecore