15,374 research outputs found

    Evolution of binary stars and its implications for evolutionary population synthesis

    Full text link
    Most stars are members of binaries, and the evolution of a star in a close binary system differs from that of an ioslated star due to the proximity of its companion star. The components in a binary system interact in many ways and binary evolution leads to the formation of many peculiar stars, including blue stragglers and hot subdwarfs. We will discuss binary evolution and the formation of blue stragglers and hot subdwarfs, and show that those hot objects are important in the study of evolutionary population synthesis (EPS), and conclude that binary interactions should be included in the study of EPS. Indeed, binary interactions make a stellar population younger (hotter), and the far-ultraviolet (UV) excess in elliptical galaxies is shown to be most likely resulted from binary interactions. This has major implications for understanding the evolution of the far-UV excess and elliptical galaxies in general. In particular, it implies that the far-UV excess is not a sign of age, as had been postulated prviously and predicts that it should not be strongly dependent on the metallicity of the population, but exists universally from dwarf ellipticals to giant ellipticals.Comment: Oral talk on IAUS 262, Brazi

    Symmetric Versus Nonsymmetric Structure of the Phosphorus Vacancy on InP(110)

    Full text link
    The atomic and electronic structure of positively charged P vacancies on InP(110) surfaces is determined by combining scanning tunneling microscopy, photoelectron spectroscopy, and density-functional theory calculations. The vacancy exhibits a nonsymmetric rebonded atomic configuration with a charge transfer level 0.75+-0.1 eV above the valence band maximum. The scanning tunneling microscopy (STM) images show only a time average of two degenerate geometries, due to a thermal flip motion between the mirror configurations. This leads to an apparently symmetric STM image, although the ground state atomic structure is nonsymmetric.Comment: 5 pages including 3 figures. related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Low Loss Metamaterials Based on Classical Electromagnetically Induced Transparency

    Full text link
    We demonstrate theoretically that electromagnetically induced transparency can be achieved in metamaterials, in which electromagnetic radiation is interacting resonantly with mesoscopic oscillators rather than with atoms. We describe novel metamaterial designs that can support full dark resonant state upon interaction with an electromagnetic beam and we present results of its frequency-dependent effective permeability and permittivity. These results, showing a transparency window with extremely low absorption and strong dispersion, are confirmed by accurate simulations of the electromagnetic field propagation in the metamaterial

    Managed Bumblebees Outperform Honeybees in Increasing Peach Fruit Set in China: Different Limiting Processes with Different Pollinators

    Get PDF
    © 2015 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article

    Spatial-Temporal Deep Embedding for Vehicle Trajectory Reconstruction from High-Angle Video

    Full text link
    Spatial-temporal Map (STMap)-based methods have shown great potential to process high-angle videos for vehicle trajectory reconstruction, which can meet the needs of various data-driven modeling and imitation learning applications. In this paper, we developed Spatial-Temporal Deep Embedding (STDE) model that imposes parity constraints at both pixel and instance levels to generate instance-aware embeddings for vehicle stripe segmentation on STMap. At pixel level, each pixel was encoded with its 8-neighbor pixels at different ranges, and this encoding is subsequently used to guide a neural network to learn the embedding mechanism. At the instance level, a discriminative loss function is designed to pull pixels belonging to the same instance closer and separate the mean value of different instances far apart in the embedding space. The output of the spatial-temporal affinity is then optimized by the mutex-watershed algorithm to obtain final clustering results. Based on segmentation metrics, our model outperformed five other baselines that have been used for STMap processing and shows robustness under the influence of shadows, static noises, and overlapping. The designed model is applied to process all public NGSIM US-101 videos to generate complete vehicle trajectories, indicating a good scalability and adaptability. Last but not least, the strengths of the scanline method with STDE and future directions were discussed. Code, STMap dataset and video trajectory are made publicly available in the online repository. GitHub Link: shorturl.at/jklT0
    • …
    corecore