1,045 research outputs found

    Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia

    Get PDF
    The particle mixing state plays a significant yet poorly quantified role in aerosol radiative forcing, especially for the mixing of dust (mineral absorbing) and anthropogenic pollution (black carbon absorbing) over East Asia. We have investigated the absorption enhancement of mixed-type aerosols over East Asia by using the Aerosol Robotic Network observations and radiative transfer model calculations. The mixed-type aerosols exhibit significantly enhanced absorbing ability than the corresponding unmixed dust and anthropogenic aerosols, as revealed in the spectral behavior of absorbing aerosol optical depth, single scattering albedo, and imaginary refractive index. The aerosol radiative efficiencies for the dust, mixed-type, and anthropogenic aerosols are −101.0, −112.9, and −98.3 Wm⁻²τ⁻¹ at the bottom of the atmosphere (BOA); −42.3, −22.5, and −39.8 Wm⁻²τ⁻¹ at the top of the atmosphere (TOA); and 58.7, 90.3, and 58.5 Wm⁻²τ⁻¹ in the atmosphere (ATM), respectively. The BOA cooling and ATM heating efficiencies of the mixed-type aerosols are significantly higher than those of the unmixed aerosol types over the East Asia region, resulting in atmospheric stabilization. In addition, the mixed-type aerosols correspond to a lower TOA cooling efficiency, indicating that the cooling effect by the corresponding individual aerosol components is partially counteracted. We conclude that the interaction between dust and anthropogenic pollution not only represents a viable aerosol formation pathway but also results in unfavorable dispersion conditions, both exacerbating the regional air pollution in East Asia. Our results highlight the necessity to accurately account for the mixing state of aerosols in atmospheric models over East Asia in order to better understand the formation mechanism for regional air pollution and to assess its impacts on human health, weather, and climate

    High Dimensional Apollonian Networks

    Get PDF
    We propose a simple algorithm which produces high dimensional Apollonian networks with both small-world and scale-free characteristics. We derive analytical expressions for the degree distribution, the clustering coefficient and the diameter of the networks, which are determined by their dimension

    The sustained influence of prior experience induced by social observation on placebo and nocebo responses

    Get PDF
    Background: Social observation is one of the main ways to gain experience. Similar to first-person experience, observational experience affects the effectiveness of subsequent treatments. Yet, it is still undetermined whether the influence of social observation on placebo and nocebo effects to subsequent treatments remains even if related experience occurred a few days ago.</p

    Tunable Correlated Chern Insulator and Ferromagnetism in Trilayer Graphene/Boron Nitride Moir\'e Superlattice

    Full text link
    Studies on two-dimensional electron systems in a strong magnetic field first revealed the quantum Hall (QH) effect, a topological state of matter featuring a finite Chern number (C) and chiral edge states. Haldane later theorized that Chern insulators with integer QH effects could appear in lattice models with complex hopping parameters even at zero magnetic field. The ABC-trilayer graphene/hexagonal boron nitride (TLG/hBN) moir\'e superlattice provides an attractive platform to explore Chern insulators because it features nearly flat moir\'e minibands with a valley-dependent electrically tunable Chern number. Here we report the experimental observation of a correlated Chern insulator in a TLG/hBN moir\'e superlattice. We show that reversing the direction of the applied vertical electric field switches TLG/hBN's moir\'e minibands between zero and finite Chern numbers, as revealed by dramatic changes in magneto-transport behavior. For topological hole minibands tuned to have a finite Chern number, we focus on 1/4 filling, corresponding to one hole per moir\'e unit cell. The Hall resistance is well quantized at h/2e2, i.e. C = 2, for |B| > 0.4 T. The correlated Chern insulator is ferromagnetic, exhibiting significant magnetic hysteresis and a large anomalous Hall signal at zero magnetic field. Our discovery of a C = 2 Chern insulator at zero magnetic field should open up exciting opportunities for discovering novel correlated topological states, possibly with novel topological excitations, in nearly flat and topologically nontrivial moir\'e minibands.Comment: 16 pages, 4 figures, and 2 extended figure

    High affinity binding of H3K14ac through collaboration of bromodomains 2, 4 and 5 is critical for the molecular and tumor suppressor functions of PBRM1.

    Get PDF
    Polybromo-1 (PBRM1) is an important tumor suppressor in kidney cancer. It contains six tandem bromodomains (BDs), which are specialized structures that recognize acetyl-lysine residues. While BD2 has been found to bind acetylated histone H3 lysine 14 (H3K14ac), it is not known whether other BDs collaborate with BD2 to generate strong binding to H3K14ac, and the importance of H3K14ac recognition for the molecular and tumor suppressor function of PBRM1 is also unknown. We discovered that full-length PBRM1, but not its individual BDs, strongly binds H3K14ac. BDs 2, 4, and 5 were found to collaborate to facilitate strong binding to H3K14ac. Quantitative measurement of the interactions between purified BD proteins and H3K14ac or nonacetylated peptides confirmed the tight and specific association of the former. Interestingly, while the structural integrity of BD4 was found to be required for H3K14ac recognition, the conserved acetyl-lysine binding site of BD4 was not. Furthermore, simultaneous point mutations in BDs 2, 4, and 5 prevented recognition of H3K14ac, altered promoter binding and gene expression, and caused PBRM1 to relocalize to the cytoplasm. In contrast, tumor-derived point mutations in BD2 alone lowered PBRM1\u27s affinity to H3K14ac and also disrupted promoter binding and gene expression without altering cellular localization. Finally, overexpression of PBRM1 variants containing point mutations in BDs 2, 4, and 5 or BD2 alone failed to suppress tumor growth in a xenograft model. Taken together, our study demonstrates that BDs 2, 4, and 5 of PBRM1 collaborate to generate high affinity to H3K14ac and tether PBRM1 to chromatin. Mutations in BD2 alone weaken these interactions, and this is sufficient to abolish its molecular and tumor suppressor functions

    Vertex labeling and routing in expanded Apollonian networks

    Get PDF
    We present a family of networks, expanded deterministic Apollonian networks, which are a generalization of the Apollonian networks and are simultaneously scale-free, small-world, and highly clustered. We introduce a labeling of their vertices that allows to determine a shortest path routing between any two vertices of the network based only on the labels.Comment: 16 pages, 2 figure

    2D materials beyond graphene for high-performance energy storage applications

    Get PDF
    Energy crisis is one of the most urgent and critical issues in our modern society. Currently, there is an increasing demand for efficient, low-cost, light-weight, flexible and environmentally benign, small-, medium-, and large-scale energy storage devices, which can be used to power smart grids, portable electronic devices, and electric vehicles. Novel electrode materials, with a high energy density at high power are urgently needed for realizing high-performance energy storage devices. The recent development in the field of 2D materials, including both graphene and other layered systems, has shown promise for a wide range of applications. In particular, graphene analogues, due to their remarkable electrochemical properties, have shown great potential in energy-related applications. This review aims at providing an overview of current research and important advances on the development of 2D materials beyond graphene for supercapacitors and batteries. The major challenges to be tackled, and more generally the future directions in the field, are also highlighted
    corecore