8,562 research outputs found
Recommended from our members
Converting a CAD Model into a Manufacturing Model for the Components Made of a Multiphase Perfect Material
To manufacture the component made of a multiphase perfect material (including homogeneous
and multi heterogeneous materials), it CAD model should be processed and converted into
layered manufacturing model for further transformation of numerical control (NC) coding. This
paper develops its detailed approaches and corresponding software. The process planning is made
first and includes: (1) determining the build orientation of the component; and (2) slicing the
component into layers adaptively according to different material regions since different materials
have different optimal layer thickness for manufacturing. After the process planning, the layered
manufacturing models with necessary information, including fabrication sequence and material
information of each layer, are fully generated.Mechanical Engineerin
High Current Matching over Full-Swing and Low-Glitch Charge Pump Circuit for PLLs
A high current matching over full-swing and low-glitch charge pump (CP) circuit is proposed. The current of the CP is split into two identical branches having one-half the original current. The two branches are connected in source-coupled structure, and a two-stage amplifier is used to regulate the common-source voltage for the minimum current mismatch. The proposed CP is designed in TSMC 0.18µm CMOS technology with a power supply of 1.8 V. SpectreRF based simulation results show the mismatch between the current source and the current sink is less than 0.1% while the current is 40 µA and output swing is 1.32 V ranging from 0.2 V to 1.52 V. Moreover, the transient output current presents nearly no glitches. The simulation results verify the usage of the CP in PLLs with the maximum tuning range from the voltage-controlled oscillator, as well as the low power supply applications
CO preferential oxidation in a novel Au@ZrO₂ flow-through catalytic membrane reactor with high stability and efficiency
CO preferential oxidation (CO-PROX) achieves much interest as a strategy to remove trace CO in reformed gases for hydrogen utilization. Herein, we reported a novel Au@ZrO₂ catalytic membrane reactor by embedding gold nano-particles in ZrO₂ hollow fiber membrane for CO-PROX. The flow-through catalytic membrane exhibited high catalytic activity and oxygen selectivity, which gave a turnover frequency of 4.73 s⁻¹ at 60 °C, 2–3 times higher than conventional catalyst pellets. CO conversion of >95% was achieved over the catalytic membrane, which maintained great operational stability during 500-h operation even CO₂ and H₂O were added in the feed stream. The excellent catalytic performance of the flow-through catalytic membrane makes gold catalyst possible for practical application in the removal of CO from hydrogen
Regiodivergent enantioselective C-H functionalization of Boc-1,3-oxazinanes for the synthesis of beta(2)- and beta(3)-amino acids
beta(2)- and beta(3)-amino acids are important chiral building blocks for the design of new pharmaceuticals and peptidomimetics. Here, we report a straightforward regio- and enantiodivergent access to these compounds using a one-pot reaction composed of sparteine-mediated enantioselective lithiation of a Boc-1,3-oxazinane, transmetallation to zinc and direct or migratory Negishi coupling with an organic electrophile. The regioselectivity of the Negishi coupling was highly ligand-controlled and switch-able to obtain the C4- or the C5-functionalized product exclusively. High enantioselectivities were achieved on a broad range of examples, and a catalytic version in chiral diamine was developed using the (+)-sparteine surrogate. Selected C4- and C5-functionalized Boc-1,3-oxazinanes were subsequently converted to highly enantioenriched beta(2)- and beta(3)-amino acids with the (R) or (S) configuration, depending on the sparteine enantiomer employed in the lithiation step
Bis[(diphenylphosphanylmethyl)diphenylphosphane sulfide-κ2 P,S]copper(I) hexafluoridophosphate
In the title compound, [Cu(C25H22P2S)2]PF6, the CuI atom, lying on a twofold rotation axis, adopts a distorted tetrahedral geometry. The (diphenylphosphanylmethyl)diphenylphosphane sulfide ligand coordinates to the CuI atom through one S and one P atom, forming a stable five-membered chelate ring. The P atom of the PF6
− anion also lies on a twofold rotation axis
- …