8,016 research outputs found

    High Current Matching over Full-Swing and Low-Glitch Charge Pump Circuit for PLLs

    Get PDF
    A high current matching over full-swing and low-glitch charge pump (CP) circuit is proposed. The current of the CP is split into two identical branches having one-half the original current. The two branches are connected in source-coupled structure, and a two-stage amplifier is used to regulate the common-source voltage for the minimum current mismatch. The proposed CP is designed in TSMC 0.18µm CMOS technology with a power supply of 1.8 V. SpectreRF based simulation results show the mismatch between the current source and the current sink is less than 0.1% while the current is 40 µA and output swing is 1.32 V ranging from 0.2 V to 1.52 V. Moreover, the transient output current presents nearly no glitches. The simulation results verify the usage of the CP in PLLs with the maximum tuning range from the voltage-controlled oscillator, as well as the low power supply applications

    CO preferential oxidation in a novel Au@ZrO₂ flow-through catalytic membrane reactor with high stability and efficiency

    Get PDF
    CO preferential oxidation (CO-PROX) achieves much interest as a strategy to remove trace CO in reformed gases for hydrogen utilization. Herein, we reported a novel Au@ZrO₂ catalytic membrane reactor by embedding gold nano-particles in ZrO₂ hollow fiber membrane for CO-PROX. The flow-through catalytic membrane exhibited high catalytic activity and oxygen selectivity, which gave a turnover frequency of 4.73 s⁻¹ at 60 °C, 2–3 times higher than conventional catalyst pellets. CO conversion of >95% was achieved over the catalytic membrane, which maintained great operational stability during 500-h operation even CO₂ and H₂O were added in the feed stream. The excellent catalytic performance of the flow-through catalytic membrane makes gold catalyst possible for practical application in the removal of CO from hydrogen

    Regiodivergent enantioselective C-H functionalization of Boc-1,3-oxazinanes for the synthesis of beta(2)- and beta(3)-amino acids

    Get PDF
    beta(2)- and beta(3)-amino acids are important chiral building blocks for the design of new pharmaceuticals and peptidomimetics. Here, we report a straightforward regio- and enantiodivergent access to these compounds using a one-pot reaction composed of sparteine-mediated enantioselective lithiation of a Boc-1,3-oxazinane, transmetallation to zinc and direct or migratory Negishi coupling with an organic electrophile. The regioselectivity of the Negishi coupling was highly ligand-controlled and switch-able to obtain the C4- or the C5-functionalized product exclusively. High enantioselectivities were achieved on a broad range of examples, and a catalytic version in chiral diamine was developed using the (+)-sparteine surrogate. Selected C4- and C5-functionalized Boc-1,3-oxazinanes were subsequently converted to highly enantioenriched beta(2)- and beta(3)-amino acids with the (R) or (S) configuration, depending on the sparteine enantiomer employed in the lithiation step

    Bis[(diphenyl­phosphanylmeth­yl)diphenyl­phosphane sulfide-κ2 P,S]copper(I) hexa­fluoridophosphate

    Get PDF
    In the title compound, [Cu(C25H22P2S)2]PF6, the CuI atom, lying on a twofold rotation axis, adopts a distorted tetra­hedral geometry. The (diphenyl­phosphanylmeth­yl)diphenyl­phos­phane sulfide ligand coordinates to the CuI atom through one S and one P atom, forming a stable five-membered chelate ring. The P atom of the PF6 − anion also lies on a twofold rotation axis
    corecore