221 research outputs found

    Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications

    Get PDF
    Abstract Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction (ORR), which is the rate-determining factor affecting overall system performance. Therefore, to increase the rate of ORR for enhanced system performances, efficient electrocatalysts are essential. And although ORR electrocatalysts have been intensively explored and developed, significant breakthroughs have yet been achieved in terms of catalytic activity, stability, cost and associated electrochemical system performance. Based on this, this review will comprehensively present the recent progresses of ORR electrocatalysts, including precious metal catalysts, non-precious metal catalysts, single-atom catalysts and metal-free catalysts. In addition, major technical challenges are analyzed and possible future research directions to overcome these challenges are proposed to facilitate further research and development toward practical application. Graphic Abstrac

    An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries

    Get PDF
    Abstract Although metal-air batteries (MABs) including Mg-air batteries possess high theoretical energy densities and are promising in energy storage systems, the poor performances and high cost of corresponding electrocatalysts and air cathodes significantly limit practical application. Based on this, the present review gives a summary of the recent progress in the development of cost effective non-noble metal electrocatalysts and their associated air cathodes for MABs, with a particular focus on Mg-air batteries including the aspects of corresponding catalyst synthesis and characterization, catalyzed oxygen reduction reaction (ORR) mechanism, air cathode fabrication and performance validation. The paper also provides an analysis on the issues that challenge the development of advanced electrocatalysts and the associated air cathodes for Mg-air batteries, as well as a discussion of potential research directions that may help resolve these issues and facilitate the practical application of Mg-air batteries

    Recent Progresses in Electrocatalysts for Water Electrolysis

    Get PDF
    Abstract The study of hydrogen evolution reaction and oxygen evolution reaction electrocatalysts for water electrolysis is a developing field in which noble metal-based materials are commonly used. However, the associated high cost and low abundance of noble metals limit their practical application. Non-noble metal catalysts, aside from being inexpensive, highly abundant and environmental friendly, can possess high electrical conductivity, good structural tunability and comparable electrocatalytic performances to state-of-the-art noble metals, particularly in alkaline media, making them desirable candidates to reduce or replace noble metals as promising electrocatalysts for water electrolysis. This article will review and provide an overview of the fundamental knowledge related to water electrolysis with a focus on the development and progress of non-noble metal-based electrocatalysts in alkaline, polymer exchange membrane and solid oxide electrolysis. A critical analysis of the various catalysts currently available is also provided with discussions on current challenges and future perspectives. In addition, to facilitate future research and development, several possible research directions to overcome these challenges are provided in this article. Graphical Abstrac

    A Review of Carbon-Composited Materials as Air-Electrode Bifunctional Electrocatalysts for Metal–Air Batteries

    Get PDF
    AbstractMetal–air batteries (MABs), particularly rechargeable MABs, have gained renewed interests as a potential energy storage/conversion solution due to their high specific energy, low cost, and safety. The development of MABs has, however, been considerably hampered by its relatively low rate capability and its lack of efficient and stable air catalysts in which the former stems mainly from the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) and the latter stems from the corrosion/oxidation of carbon materials in the presence of oxygen and high electrode potentials. In this review, various carbon-composited bifunctional electrocatalysts are reviewed to summarize progresses in the enhancement of ORR/OER and durability induced by the synergistic effects between carbon and other component(s). Catalyst mechanisms of the reaction processes and associated performance enhancements as well as technical challenges hindering commercialization are also analyzed. To facilitate further research and development, several research directions for overcoming these challenges are also proposed

    A New Recommendation Algorithm Based on User’s Dynamic Information in Complex Social Network

    Get PDF
    The development of recommendation system comes with the research of data sparsity, cold start, scalability, and privacy protection problems. Even though many papers proposed different improved recommendation algorithms to solve those problems, there is still plenty of room for improvement. In the complex social network, we can take full advantage of dynamic information such as user’s hobby, social relationship, and historical log to improve the performance of recommendation system. In this paper, we proposed a new recommendation algorithm which is based on social user’s dynamic information to solve the cold start problem of traditional collaborative filtering algorithm and also considered the dynamic factors. The algorithm takes user’s response information, dynamic interest, and the classic similar measurement of collaborative filtering algorithm into account. Then, we compared the new proposed recommendation algorithm with the traditional user based collaborative filtering algorithm and also presented some of the findings from experiment. The results of experiment demonstrate that the new proposed algorithm has a better recommended performance than the collaborative filtering algorithm in cold start scenario

    A New Three-Dimensional Indoor Positioning Mechanism Based on Wireless LAN

    Get PDF
    The researches on two-dimensional indoor positioning based on wireless LAN and the location fingerprint methods have become mature, but in the actual indoor positioning situation, users are also concerned about the height where they stand. Due to the expansion of the range of three-dimensional indoor positioning, more features must be needed to describe the location fingerprint. Directly using a machine learning algorithm will result in the reduced ability of classification. To solve this problem, in this paper, a “divide and conquer” strategy is adopted; that is, first through k-medoids algorithm the three-dimensional location space is clustered into a number of service areas, and then a multicategory SVM with less features is created for each service area for further positioning. Our experiment shows that the error distance resolution of the approach with k-medoids algorithm and multicategory SVM is higher than that of the approach only with SVM, and the former can effectively decrease the “crazy prediction.

    Chinese Location Word Recognition Using Service Context Information for Location-Based Service

    Get PDF
    With the development of mobile networks and positioning technology, extensive attention focuses on the location-based service (LBS) which processes the application data including user queries, information searches, and user comments by the location information. In LBS, the recognition of the location word in user messages is meaningful and important. The location word recognition in LBS is different from the traditional named entity recognition, owing to the additional information such as user location coordinates in LBS. This paper proposes a method that adds the service context information including user location coordinates and message timestamps into the machine learning to improve the accuracy of the Chinese location word recognition. The experiment based on microblog datasets in mobile environment proves the viability and effectiveness of this method

    PEM fuel cells operated at 0% relative humidity in the temperature range of 23-120℃

    Get PDF
    Operation of a proton exchange membrane (PEM) fuel cell without external humidification (or 0% relative humidity, abbreviated as 0% RH) of the reactant gases is highly desirable, because it can eliminate the gas humidification system and thus decrease the complexity of the PEM fuel cell system and increase the system volume power density (W/l) and weight power density (W/kg). In this investigation, a PEM fuel cell was operated in the temperature range of 23-120 degrees C, in particular in a high temperature PEM fuel cell operation range of 80-120 degrees C, with dry reactant gases, and the cell performance was examined according to varying operation parameters. An ac impedance method was used to compare the performance at 0% RH with that at 100% RH; the results suggested that the limited proton transfer process to the Pt catalysts, mainly in the inonomer within the membrane electrode assembly (MEA) could be responsible for the performance drop. It was demonstrated that operating a fuel cell using a commercially available membrane (Nafion (R) 112) is feasible under certain conditions without external humidification. However, the cell performance at 0% RH decreased with increasing operation temperature and reactant gas flow rate and decreasing operation pressure. (c) 2007 Elsevier Ltd. All rights reserved
    corecore