23 research outputs found

    Perivascular macrophages in the neonatal macaque brain undergo massive necroptosis after simian immunodeficiency virus infection

    Get PDF
    We previously showed that rhesus macaques neonatally infected with simian immunodeficiency virus (SIV) do not develop SIV encephalitis (SIVE) and maintain low brain viral loads despite having similar plasma viral loads compared to SIV-infected adults. We hypothesize that differences in myeloid cell populations that are the known target of SIV and HIV in the brain contribute to the lack of neonatal susceptibility to lentivirus-induced encephalitis. Using immunohistochemistry and immunofluorescence microscopy, we examined the frontal cortices from uninfected and SIV-infected infant and adult macaques (n = 8/ea) as well as adults with SIVE (n = 4) to determine differences in myeloid cell populations. The number of CD206+ brain perivascular macrophages (PVMs) was significantly greater in uninfected infants than in uninfected adults and was markedly lower in SIV-infected infants while microglia numbers were unchanged across groups. CD206+ PVMs, which proliferate after infection in SIV infected adults, did not undergo proliferation in infants. While virtually all CD206+ cells in adults are also CD163+, infants have a distinct CD206 single-positive population in addition to the double-positive population commonly seen in adults. Notably, we found that more than 60% of these unique CD206+CD163− PVMs in SIV-infected infants were positive for cleaved caspase-3, an indicator of apoptosis, and that nearly 100% of this subset were concomitantly positive for the necroptosis marker receptor interacting protein kinase-3 (RIP3). These findings show that distinct subpopulations of PVMs found in infants undergo programmed cell death instead of proliferation following SIV infection, which may lead to the absence of PVM-dependent SIVE and the limited size of the virus reservoir in the infant brain. Includes Supplementary Material

    A Double Humanized BLT-mice Model Featuring a Stable Human-Like Gut Microbiome and Human Immune System

    Get PDF
    Humanized mice (hu-mice) that feature a functional human immune system have fundamentally changed the study of human pathogens and disease. They can be used to model diseases that are otherwise difficult or impossible to study in humans or other animal models. The gut microbiome can have a profound impact on human health and disease. However, the murine gut microbiome is very different than the one found in humans. There is a need for improved pre-clinical hu-mice models that have an engrafted human gut microbiome. Therefore, we created double hu-mice that feature both a human immune system and stable human-like gut microbiome. NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice are one of the best animals for humanization due to their high level of immunodeficiency. However, germ-free NSG mice, and various other important germ-free mice models are not currently commercially available. Further, many research settings do not have access to gnotobiotic facilities, and working under gnotobiotic conditions can often be expensive and time consuming. Importantly, germ-free mice have several immune deficiencies that exist even after the engraftment of microbes. Therefore, we developed a protocol that does not require germ-free animals or gnotobiotic facilities. To generate double hu-mice, NSG mice were treated with radiation prior to surgery to create bone-marrow, liver, thymus-humanized (hu-BLT) mice. The mice were then treated with broad spectrum antibiotics to deplete the pre-existing murine gut microbiome. After antibiotic treatment, the mice were given fecal transplants with healthy human donor samples via oral gavage. Double hu-BLT mice had unique 16S rRNA gene profiles based on the individual human donor sample that was transplanted. Importantly, the transplanted human-like microbiome was stable in the double hu-BLT mice for the duration of the study up to 14.5 weeks post-transplant

    A Double Humanized BLT-mice Model Featuring a Stable Human-Like Gut Microbiome and Human Immune System

    No full text
    Humanized mice (hu-mice) that feature a functional human immune system have fundamentally changed the study of human pathogens and disease. They can be used to model diseases that are otherwise difficult or impossible to study in humans or other animal models. The gut microbiome can have a profound impact on human health and disease. However, the murine gut microbiome is very different than the one found in humans. There is a need for improved pre-clinical hu-mice models that have an engrafted human gut microbiome. Therefore, we created double hu-mice that feature both a human immune system and stable human-like gut microbiome. NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice are one of the best animals for humanization due to their high level of immunodeficiency. However, germ-free NSG mice, and various other important germ-free mice models are not currently commercially available. Further, many research settings do not have access to gnotobiotic facilities, and working under gnotobiotic conditions can often be expensive and time consuming. Importantly, germ-free mice have several immune deficiencies that exist even after the engraftment of microbes. Therefore, we developed a protocol that does not require germ-free animals or gnotobiotic facilities. To generate double hu-mice, NSG mice were treated with radiation prior to surgery to create bone-marrow, liver, thymus-humanized (hu-BLT) mice. The mice were then treated with broad spectrum antibiotics to deplete the pre-existing murine gut microbiome. After antibiotic treatment, the mice were given fecal transplants with healthy human donor samples via oral gavage. Double hu-BLT mice had unique 16S rRNA gene profiles based on the individual human donor sample that was transplanted. Importantly, the transplanted human-like microbiome was stable in the double hu-BLT mice for the duration of the study up to 14.5 weeks post-transplant

    Human Microglia Extensively Reconstitute in Humanized-BLT Mice With Human Interleukin-34 Transgene and Support HIV-1 Brain Infection

    Get PDF
    Humanized bone marrow-liver-thymic (hu-BLT) mice develop a functional immune system in periphery, nevertheless, have a limited reconstitution of human myeloid cells, especially microglia, in CNS. Further, whether bone marrow derived hematopoietic stem and progenitor cells (HSPCs) can enter the brain and differentiate into microglia in adults remains controversial. To close these gaps, in this study we unambiguously demonstrated that human microglia in CNS were extensively reconstituted in adult NOG mice with human interleukin-34 transgene (hIL34 Tg) from circulating CD34+ HSPCs, nonetheless not in hu-BLT NOG mice, providing strong evidence that human CD34+ HSPCs can enter adult brain and differentiate into microglia in CNS in the presence of hIL34. Further, the human microglia in the CNS of hu-BLT-hIL34 NOG mice robustly supported HIV-1 infection re-enforcing the notion that microglia are the most important target cells of HIV-1 in CNS and demonstrating its great potential as an in vivo model for studying HIV-1 pathogenesis and evaluating curative therapeutics in both periphery and CNS compartments

    Upregulation of Cell Surface Glycoproteins in Correlation with KSHV LANA in the Kaposi Sarcoma Tumor Microenvironment

    Get PDF
    HIV-associated epidemic Kaposi sarcoma (EpKS) remains one of the most prevalent cancers in sub-Saharan Africa despite the widespread uptake of anti-retroviral therapy and HIV-1 suppression. In an effort to define potential therapeutic targets against KS tumors, we analyzed previously published KS bulk tumor transcriptomics to identify cell surface biomarkers. In addition to upregulated gene expression (\u3e6-fold) in the EpKS tumor microenvironment, biomarkers were selected for correlation with KSHV latency-associated nuclear antigen (LANA) expression. The cell surface glycoprotein genes identified were KDR, FLT4, ADAM12, UNC5A, ZP2, and OX40, as well as the endothelial lineage determinants Prox-1 and CD34. Each protein was evaluated for its expression and co-localization with KSHV LANA using multi-color immunofluorescence in KS tissues, KSHV-infected L1T2 cells, uninfected TIVE cells, and murine L1T2 tumor xenografts. Five surface glycoproteins (KDR, FLT4, UNC5A, ADAM12, and CD34) were associated with LANA-positive cells but were also detected in uninfected cells in the KS microenvironment. In vitro L1T2 cultures showed evidence of only FLT4, KDR, and UNC5A, whereas mouse L1T2 xenografts recapitulated human KS cell surface expression profiles, with the exception of CD34 and Prox-1. In KS tumors, most LANA-positive cells co-expressed markers of vascular as well as lymphatic endothelial lineages, suggesting KS-associated dedifferentiation to a more mesenchymal/progenitor phenotype

    Upregulation of Cell Surface Glycoproteins in Correlation with KSHV LANA in the Kaposi Sarcoma Tumor Microenvironment

    No full text
    HIV-associated epidemic Kaposi sarcoma (EpKS) remains one of the most prevalent cancers in sub-Saharan Africa despite the widespread uptake of anti-retroviral therapy and HIV-1 suppression. In an effort to define potential therapeutic targets against KS tumors, we analyzed previously published KS bulk tumor transcriptomics to identify cell surface biomarkers. In addition to upregulated gene expression (>6-fold) in the EpKS tumor microenvironment, biomarkers were selected for correlation with KSHV latency-associated nuclear antigen (LANA) expression. The cell surface glycoprotein genes identified were KDR, FLT4, ADAM12, UNC5A, ZP2, and OX40, as well as the endothelial lineage determinants Prox-1 and CD34. Each protein was evaluated for its expression and co-localization with KSHV LANA using multi-color immunofluorescence in KS tissues, KSHV-infected L1T2 cells, uninfected TIVE cells, and murine L1T2 tumor xenografts. Five surface glycoproteins (KDR, FLT4, UNC5A, ADAM12, and CD34) were associated with LANA-positive cells but were also detected in uninfected cells in the KS microenvironment. In vitro L1T2 cultures showed evidence of only FLT4, KDR, and UNC5A, whereas mouse L1T2 xenografts recapitulated human KS cell surface expression profiles, with the exception of CD34 and Prox-1. In KS tumors, most LANA-positive cells co-expressed markers of vascular as well as lymphatic endothelial lineages, suggesting KS-associated dedifferentiation to a more mesenchymal/progenitor phenotype

    Expression quantitative trait loci for PAX8 contributes to the prognosis of hepatocellular carcinoma.

    No full text
    Paired-box family member PAX8 encodes a transcription factor that has a role in cell differentiation and cell growth and may participate in the prognosis of hepatocellular carcinoma (HCC). By bioinformatics analysis, we identified several single nucleotide polymorphisms (SNPs) within a newly identified long non-coding RNA (lncRNA) AC016683.6 as expression quantitative trait loci (eQTLs) for PAX8. Hence, we hypothesized that PAX8eQTLs in lncRNA AC016683.6 may influence the HCC prognosis. We then performed a case-only study to assess the association between the two SNPs as well as the prognosis of HCC in 331 HBV-positive HCC patients without surgical treatment. Cox proportional hazard models were used for survival analysis with adjustments for the age, gender, smoking status, drinking status, Barcelona-Clinic Liver Cancer (BCLC) stage, and chemotherapy or TACE (transcatheter hepatic arterial chemoembolization) status. We found that the G allele of rs1110839 and the T allele of rs4848320 in PAX8was significantly associated with a better prognosis compared with the T allele of rs1110839 and the C allele of rs4848320 (adjusted HR = 0.74, 95% CI = 0.61-0.91, P = 0.004 for rs1110839 and adjusted HR = 0.71, 95% CI = 0.54-0.94, P = 0.015 for rs4848320 in the additive model). Furthermore, the combined effect of the variant genotypes for these two SNPs was more prominent in patients with the BCLC-C stage orpatients with chemotherapy or TACE. Although the exact biological function remains to be explored, our findings suggest a possible association of PAX8eQTLs in lncRNA AC016683.6 with the HCC prognosis inthe Chinese population. Further large and functional studies are needed to confirm our findings
    corecore