2,422 research outputs found

    Examining the Relationship Between Star Player Characteristics and Brand Equity in Professional Sport Teams

    Get PDF
    The overarching purpose of this study was to examine the impact of star athletes on the consumer-based brand equity of professional sport teams. Through a comprehensive review of literature and a test of content validity by an expert panel, preliminary scales were developed to measure the characteristic attributes of star athletes and the areas of brand equity that were affected by these traits. Research participants (N = 195) were professional sport fans that responded to a survey questionnaire in a classroom setting. After conducting factor analyses on the results, two factors (On -Field and Off-Field) for the star characteristic variables and six factors (Brand Loyalty, Brand Awareness, Brand Image, Brand Value, Perceived Quality, and Brand Reputation) for the areas of brand equity emerged. Multiple regression analyses revealed that the On-Field and Off-Field factors combined to exert the greatest, significant effects on the Brand Awareness and Brand Image components

    CDK4 regulation by TNFR1 and JNK is required for NF-κB–mediated epidermal growth control

    Get PDF
    Nuclear factor κB (NF-κB) mediates homeostatic growth inhibition in the epidermis, and a loss of NF-κB function promotes proliferation and oncogenesis. To identify mechanisms responsible for these effects, we impaired NF-κB action in the epidermis by three different genetic approaches, including conditional NF-κB blockade. In each case, epidermal hyperplasia was accompanied by an increase in both protein levels and tissue distribution of the G1 cell cycle kinase, CDK4. CDK4 up-regulation required intact TNFR1 and c-Jun NH2-terminal kinase (JNK) function. Cdk4 gene deletion concomitant with conditional NF-κB blockade demonstrated that CDK4 is required for growth deregulation. Therefore, epidermal homeostasis depends on antagonist regulation of CDK4 expression by NF-κB and TNFR1/JNK

    A preexisting rare PIK3CA e545k subpopulation confers clinical resistance to MEK plus CDK4/6 inhibition in NRAS melanoma and is dependent on S6K1 signaling

    Get PDF
    Combined MEK and CDK4/6 inhibition (MEKi + CDK4i) has shown promising clinical outcomes in patients with NRAS- mutant melanoma. Here, we interrogated longitudinal biopsies from a patient who initially responded to MEKi + CDK4i therapy but subsequently developed resistance. Whole-exome sequencing and functional validation identified an acquired PIK3CA E545K mutation as conferring drug resistance. We demonstrate that PIK3CA E545K preexisted in a rare subpopulation that was missed by both clinical and research testing, but was revealed upon multiregion sampling due to PIK3CA E545K being nonuniformly distributed. This resistant population rapidly expanded after the initiation of MEKi + CDK4i therapy and persisted in all successive samples even after immune checkpoint therapy and distant metastasis. Functional studies identified activated S6K1 as both a key marker and specific therapeutic vulnerability downstream of PIK3CA E545K -induced resistance. These results demonstrate that difficult-to-detect preexisting resistance mutations may exist more often than previously appreciated and also posit S6K1 as a common downstream therapeutic nexus for the MAPK, CDK4/6, and PI3K pathways. SIGNIFICANCE: We report the first characterization of clinical acquired resistance to MEKi + CDK4i, identifying a rare preexisting PIK3CA E545K subpopulation that expands upon therapy and exhibits drug resistance. We suggest that single-region pretreatment biopsy is insufficient to detect rare, spatially segregated drug-resistant subclones. Inhibition of S6K1 is able to resensitize PIK3CA E545K -expressing NRAS-mutant melanoma cells to MEKi + CDK4i. © 2018 AAC

    CYLD Inhibits Melanoma Growth and Progression through Suppression of the JNK/AP-1 and β1-Integrin Signaling Pathways

    Get PDF
    The molecular mechanisms mediating cylindromatosis (CYLD) tumor suppressor function appear to be manifold. Here, we demonstrate that, in contrast to the increased levels of phosphorylated c-Jun NH2-terminal kinase (pJNK), CYLD was decreased in a majority of the melanoma cell lines and tissues examined. Exogenous expression of CYLD but not its catalytically deficient mutant markedly inhibited melanoma cell proliferation and migration in vitro and subcutaneous tumor growth in vivo. In addition, the melanoma cells expressing exogenous CYLD were unable to form pulmonary tumor nodules following tail-vein injection. At the molecular level, CYLD decreased β1-integrin and inhibited pJNK induction by tumor necrosis factor-α or cell attachment to collagen IV. Moreover, CYLD induced an array of other molecular changes associated with modulation of the “malignant” phenotype, including a decreased expression of cyclin D1, N-cadherin, and nuclear Bcl3, and an increased expression of p53 and E-cadherin. Most interestingly, coexpression of the constitutively active MKK7 or c-Jun mutants with CYLD prevented the above molecular changes, and fully restored melanoma growth and metastatic potential in vivo. Our findings demonstrate that the JNK/activator protein 1 signaling pathway underlies the melanoma growth and metastasis that are associated with CYLD loss of function. Thus, restoration of CYLD and inhibition of JNK and β1-integrin function represent potential therapeutic strategies for treatment of malignant melanoma

    Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions

    Get PDF
    BACKGROUND: Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3'UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. METHODS AND FINDINGS: Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3'UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3'UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3'UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3'UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3'UTR formed smaller tumors compared with cells transfected with a control vector. CONCLUSION: Our results demonstrated that a 3'UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3'UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities

    Terahertz-driven Luminescence and Colossal Stark Effect in CdSe:CdS Colloidal Quantum Dots

    Full text link
    Unique optical properties of colloidal semiconductor quantum dots (QDs), arising from quantum mechanical confinement of charge within these structures, present a versatile testbed for the study of how high electric fields affect the electronic structure of nanostructured solids. Earlier studies of quasi-DC electric field modulation of QD properties have been limited by the electrostatic breakdown processes under the high externally applied electric fields, which have restricted the range of modulation of QD properties. In contrast, in the present work we drive CdSe:CdS core:shell QD films with high-field THz-frequency electromagnetic pulses whose duration is only a few picoseconds. Surprisingly, in response to the THz excitation we observe QD luminescence even in the absence of an external charge source. Our experiments show that QD luminescence is associated with a remarkably high and rapid modulation of the QD band-gap, which is changing by more than 0.5 eV (corresponding to 25% of the unperturbed bandgap energy) within the picosecond timeframe of THz field profile. We show that these colossal energy shifts can be consistently explained by the quantum confined Stark effect. Our work demonstrates a route to extreme modulation of material properties without configurational changes in material sets or geometries. Additionally, we expect that this platform can be adapted to a novel compact THz detection scheme where conversion of THz fields (with meV-scale photon energies) to the visible/near-IR band (with eV-scale photon energies) can be achieved at room temperature with high bandwidth and sensitivity.Comment: 8 pages, 4 figures, supplementary informatio

    IPS-1 Is Essential for the Control of West Nile Virus Infection and Immunity

    Get PDF
    The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1−/− mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1−/− mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection

    MicroRNA miR-378 Regulates Nephronectin Expression Modulating Osteoblast Differentiation by Targeting GalNT-7

    Get PDF
    MicroRNAs (miRNAs) are small fragments of single-stranded RNA containing 18-24 nucleotides, and are generated from endogenous transcripts. MicroRNAs function in post-transcriptional gene silencing by targeting the 3′-untranslated region (UTR) of mRNAs, resulting in translational repression. We have developed a system to study the role of miRNAs in cell differentiation. We have found that one of the miRNAs tested in our system (miR-378, also called miR-378*) plays a role in modulating nephronectin-mediated differentiation in the osteoblastic cell line, MC3T3-E1. Nephronectin is an extracellular matrix protein, and we have demonstrated that its over-expression enhanced osteoblast differentiation and bone nodule formation. Furthermore, we found that the nephronectin 3′-untranslated region (3′UTR) contains a binding site for miR-378. Stable transfection of MC3T3-E1 cells with miR-378 inhibited cell differentiation. MC3T3-E1 cells stably transfected with nephronectin exhibited higher rates of differentiation and nodule formation as compared with cells transfected with nephronectin containing the 3′UTR in the early stages of development, suggesting that endogenous miR-378 is present and active. However, in the later stages of MC3T3-E1 development, the differentiation rates were opposite, with higher rates of differentiation and nodule formation in the cells over-expressing the 3′UTR of nephronectin. This appeared to be the consequence of competition between nephronectin and UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GalNAc-T7 or GalNT7) for miR-378 binding, resulting in increased GalNT7 activity, which in turn lead to increased nephronectin glycosylation and product secretion, thereby resulting in a higher rate of osteoblast differentiation

    Energy Metabolism in Uncoupling Protein 3 Gene Knockout Mice

    Get PDF
    Uncoupling protein 3 (UCP3) is a member of the mitochondrial anion carrier superfamily. Based upon its high homology with UCP1 and its restricted tissue distribution to skeletal muscle and brown adipose tissue, UCP3 has been suggested to play important roles in regulating energy expenditure, body weight, and thermoregulation. Other postulated roles for UCP3 include regulation of fatty acid metabolism, adaptive responses to acute exercise and starvation, and prevention of reactive oxygen species (ROS) formation. To address these questions, we have generated mice lacking UCP3 (UCP3 knockout (KO) mice). Here, we provide evidence that skeletal muscle mitochondria lacking UCP3 are more coupled (i.e. increased state 3/state 4 ratio), indicating that UCP3 has uncoupling activity. In addition, production of ROS is increased in mitochondria lacking UCP3. This study demonstrates that UCP3 has uncoupling activity and that its absence may lead to increased production of ROS. Despite these effects on mitochondrial function, UCP3 does not seem to be required for body weight regulation, exercise tolerance, fatty acid oxidation, or cold-induced thermogenesis. The absence of such phenotypes in UCP3 KO mice could not be attributed to up-regulation of other UCP mRNAs. However, alternative compensatory mechanisms cannot be excluded. The consequence of increased mitochondrial coupling in UCP3 KO mice on metabolism and the possible role of yet unidentified compensatory mechanisms, remains to be determined
    corecore