72 research outputs found

    Search for unique membrane protein of first trimester primitive erythroblast

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Probing SWATH‐MS as a tool for proteome level quantification in a nonmodel fish

    Get PDF
    Quantitative proteomics via mass spectrometry can provide valuable insight into molecular and phenotypic characteristics of a living system. Recent mass spectrometry developments include data-independent acquisition (SWATH/DIA-MS), an accurate, sensitive and reproducible method for analysing the whole proteome. The main requirement for this method is the creation of a comprehensive spectral library. New technologies have emerged producing larger and more accurate species-specific libraries leading to a progressive collection of proteome references for multiple molecular model species. Here, for the first time, we set out to compare different spectral library constructions using multiple tissues from a coral reef fish to demonstrate its value and feasibility for nonmodel organisms. We created a large spectral library composed of 12,553 protein groups from liver and brain tissues. Via identification of differentially expressed proteins under fish exposure to elevated pCO2 and temperature, we validated the application and usefulness of these different spectral libraries. Successful identification of significant differentially expressed proteins from different environmental exposures occurred using the library with a combination of data-independent and data-dependent acquisition methods as well as both tissue types. Further analysis revealed expected patterns of significantly up-regulated heat shock proteins in a dual condition of ocean warming and acidification indicating the biological accuracy and relevance of the method. This study provides the first reference spectral library for a nonmodel organism. It represents a useful guide for future building of accurate spectral library references in nonmodel organisms allowing the discovery of ecologically relevant changes in the proteome

    Dependency on de novo protein synthesis and proteomic changes during metamorphosis of the marine bryozoan Bugula neritina

    Get PDF
    Background: Metamorphosis in the bryozoan Bugula neritina (Linne) includes an initial phase of rapid morphological rearrangement followed by a gradual phase of morphogenesis. We hypothesized that the first phase may be independent of de novo synthesis of proteins and, instead, involves post-translational modifications of existing proteins, providing a simple mechanism to quickly initiate metamorphosis. To test our hypothesis, we challenged B. neritina larvae with transcription and translation inhibitors. Furthermore, we employed 2D gel electrophoresis to characterize changes in the phosphoproteome and proteome during early metamorphosis. Differentially expressed proteins were identified by liquid chromatography tandem mass spectrometry and their gene expression patterns were profiled using semi-quantitative real time PCR. Results: When larvae were incubated with transcription and translation inhibitors, metamorphosis initiated through the first phase but did not complete. We found a significant down-regulation of 60 protein spots and the percentage of phosphoprotein spots decreased from 15% in the larval stage to12% during early metamorphosis. Two proteins--the mitochondrial processing peptidase beta subunit and severin--were abundantly expressed and phosphorylated in the larval stage, but down-regulated during metamorphosis. MPPbeta and severin were also down-regulated on the gene expression level. Conclusions: The initial morphogenetic changes that led to attachment of B. neritina did not depend on de novo protein synthesis, but the subsequent gradual morphogenesis did. This is the first time that the mitochondrial processing peptidase beta subunit or severin have been shown to be down-regulated on both gene and protein expression levels during the metamorphosis of B. neritina. Future studies employing immunohistochemistry to reveal the expression locality of these two proteins during metamorphosis should provide further evidence of the involvement of these two proteins in the morphogenetic rearrangement of B. neritina

    Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator

    Get PDF
    The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion

    Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations.

    Get PDF
    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains

    Evidence for a Role of Protein Phosphorylation in the Maintenance of the Cnidarian-Algal Symbiosis

    No full text
    The endosymbiotic relationship between cnidarians and photosynthetic dinoflagellate algae provides the foundation of coral reef ecosystems. This essential interaction is globally threatened by anthropogenic disturbance. As such, it is important to understand the molecular mechanisms underpinning the cnidarian-algal association. Here we investigated phosphorylation-mediated protein signaling as a mechanism of regulation of the cnidarian-algal interaction, and we report on the generation of the first phosphoproteome for the coral model organism Aiptasia. Using mass spectrometry-based phosphoproteomics in data-independent acquisition allowed consistent quantification of over 3,000 phosphopeptides totaling more than 1,600 phosphoproteins across aposymbiotic (symbiont-free) and symbiotic anemones. Comparison of the symbiotic states showed distinct phosphoproteomic profiles attributable to the differential phosphorylation of 539 proteins that cover a broad range of functions, from receptors to structural and signal transduction proteins. A subsequent pathway enrichment analysis identified the processes of 'protein digestion and absorption,' 'carbohydrate metabolism,' and 'protein folding, sorting, and degradation,' and highlighted differential phosphorylation of the 'phospholipase D signaling pathway' and 'protein processing in the endoplasmic reticulum.' Targeted phosphorylation of the phospholipase D signaling pathway suggests control of glutamate vesicle trafficking across symbiotic compartments, and phosphorylation of the endoplasmic reticulum machinery suggests recycling of symbiosome-associated proteins. Our study shows for the first time that changes in the phosphorylation status of proteins between aposymbiotic and symbiotic Aiptasia anemones play a role in the regulation of the cnidarian-algal symbiosis. This is the first phosphoproteomic study of a cnidarian-algal symbiotic association as well as the first application of quantification by data-independent acquisition in the coral field.publishe
    corecore