19 research outputs found

    Histone Lysine Methyltransferase SDG8 Is Involved in Brassinosteroid-Regulated Gene Expression in Arabidopsis thaliana

    Get PDF
    Citation: Wang, X., Chen, J., Xie, Z., Liu, S., Nolan, T., Ye, H., et al. (2014). Histone lysine methyltransferase SDG8 is involved in brassinosteroid- regulated gene expression in arabidopsis thaliana.The plant steroid hormones, brassinosteroids (BRs), play important roles in plant growth, development and responses to environmental stresses. BRs signal through receptors localized to the plasma membrane and other signaling components to regulate the BES1/BZR1 family of transcription factors, which modulates the expression of 4,000-5,000 genes. How BES1/BZR1 and their interacting proteins function to regulate the large number of genes are not completely understood. Here we report that histone lysine methyltransferase SDG8, implicated in Histone 3 lysine 36 di- and tri-methylation (H3K36me2 and me3), is involved in BR-regulated gene expression. BES1 interacts with SDG8, directly or indirectly through IWS1, a transcription elongation factor involved in BR-regulated gene expression. The knockout mutant sdg8 displays a reduced growth phenotype with compromised BR responses. Global gene expression studies demonstrated that SDG8 plays a major role in BR-regulated gene expression as more than half of BR-regulated genes are differentially affected in sdg8 mutant. A Chromatin Immunoprecipitation (ChIP) experiment showed that H3K36me3 is reduced in BR-regulated genes in the sdg8 mutant. Based on these results, we propose that SDG8 plays an essential role in mediating BR-regulated gene expression. Our results thus reveal a major mechanism by which histone modifications dictate hormonal regulation of gene expression

    Water-gas ratio characteristics and development concepts for water-producing gas reservoirs

    No full text
    Water production from gas wells is a key factor affecting the effectiveness of gas-reservoir development, and it poses serious challenges in terms of increasing the degree of recovery during the waterless production stage and reducing the impact of water production on gas-reservoir development in the middle and later periods. Thus, gas reservoirs must be efficiently exploited on the basis of identifying gas-water layers accurately, defining gas-water relationships, and understanding gas-water production performance. Accordingly, this study analyzes the production characteristics in gas reservoirs with different gas-water relationships, and it summarizes the rules that determine water-gas ratios. The results reveal that the water-gas ratio increases rapidly in the early stage of water production, but after a period of time, it enters a relatively stable state in which it is almost a fixed value. According to the material balance equation, the theoretically calculated water-gas ratio is fully consistent with the production rules for an entire confined gas reservoir. This shows that the reality of gas-well-water production must be faced, and that the development of water-bearing gas reservoirs must accommodate gas and water co-production. The gas-water relationship, water body scale, and reservoir heterogeneity determine the time of water breakthrough and the water-gas ratio. Therefore, we should change the traditional “water fear” concept in gas-field development, aim for an overall improvement in recovery, face up to the fact that gas wells produce water, and coordinate the development of multi-wells for entire gas reservoirs, all of which will achieve the ultimate goal of improved gas recovery

    Experimental Study on the Effective Utilization of Reserves in Tight Sandstone Gas Reservoirs and Their Applications

    No full text
    The effective utilization of reserves in tight sandstone reservoirs is one of the major concerns in terms of the development of tight sandstone gas reservoirs. However, the characteristics of reserve utilization are not fully understood, and many uncertainties still exist in the process. For this purpose, long cores on the Su 6 block of Sulige tight sandstone gas field in China were selected, and a multipoint embedded measurement system was established to study the characteristics of effective reserve utilization. Then, the effects of the related reservoir properties and production parameters were investigated. Based on the similarity theory, the effective conversion relationship between the physical experiment and the actual field production was established. The results showed that the pressure distribution in the exploitation of tight gas reservoir is nonlinear, and water cut in the reservoir will hinder the effective utilization of reserves. The lower the reservoir permeability, the larger the negative effect of water on reservoir utilization. Lower gas production rate and higher original pressure are associated with a smoother drawdown curve, which results in larger reserve utilization. The moving boundary expands with time, and its initial propagation velocity increase and then decrease. Additionally, the water cut in the reservoir can delay the spread of moving boundary propagation. The experimental results are consistent with the actual results of the field production by the similarity criterion, which can reflect and predict the production performance in tight gas reservoirs effectively. These results can provide a better understanding of reservoir pressure distribution and effective utilization of reserves to optimize the gas recovery and development benefit in tight sandstone gas reservoirs

    Research on types of gas reservoirs divided by seepage capacity and their seepage mechanism, law and productivity

    No full text
    In view of the diversity of gas reservoir classification and the differences of characteristics of geology and development in different gas reservoirs, it is necessary to study the adaptability of gas reservoir classification. This paper analyzes and summarizes the current classification methods of gas reservoirs, studies the microscopic pore characteristics and seepage mechanism of different gas reservoirs. The commonalities and individualities of seepage laws in different gas reservoirs are determined, the key factors that determine the development dynamics and effects of gas reservoirs are proposed, and the gas reservoirs types are divided from the perspective of development. The results show that the development characteristics of gas reservoirs are determined by the seepage law, and the seepage law is determined by the microscopic pore characteristics. Therefore, from the perspective of development, the microscopic pore characteristics are the fundamental of gas reservoir classification. Gas reservoirs can be divided into four types: tight, low permeability, medium and high permeability, and fractured. This classification method can unify the types of gas reservoirs according to the seepage laws of different gas reservoirs, establish corresponding seepage models, evaluate productivity, and predict performance. It is of great significance for rational, efficient and scientific development of gas fields

    Coaction of Electrostatic and Hydrophobic Interactions: Dynamic Constraints on Disordered TrkA Juxtamembrane Domain

    No full text
    The receptor tyrosine kinase family transmits signals into cell via a single transmembrane helix and a flexible juxtamembrane domain (JMD). Membrane dynamics makes it challenging to study the structural mechanism of receptor activation experimentally. In this study, we employ all-atom molecular dynamics with Highly Mobile Membrane-Mimetic to capture membrane interactions with the JMD of tropomyosin receptor kinase A (TrkA). We find that PIP2 lipids engage in lasting binding to multiple basic residues and compete with salt bridge within the peptide. We discover three residues insertion into the membrane, and perturb it through computationally designed point mutations. Single-molecule experiments indicate the contribution from hydrophobic insertion is comparable to electrostatic binding, and in-cell experiments show that enhanced TrkA-JMD insertion promotes receptor ubiquitination. Our joint work points to a scenario where basic and hydrophobic residues on disordered domains interact with lipid headgroups and tails, respectively, to restrain flexibility and potentially modulate protein function.</p

    Study of the Effect of Movable Water Saturation on Gas Production in Tight Sandstone Gas Reservoirs

    No full text
    The movable water saturation of tight sandstone reservoirs is an important parameter in characterizing water production capacity, and there is a great need to understand the relationship between movable water saturation and water production characteristics. However, movable water behavior in this context remains unclear. In this study, four groups of tight sandstone cores from the Sulige gas field are measured to understand the movable water saturation characteristics. Then, the effects such as reservoir micropore throat, clay mineral and physical properties on movable water saturation are analyzed, and the movable water saturation and water production characteristics are discussed. The results show that higher movable water saturation will result in a greater amount of water in the gas drive. There is a critical pressure difference of the gas drive, and a large amount of movable water will flow out. Movable water saturation is independent of the porosity, permeability and initial water saturation, while it is closely related to the reservoir micropore throat and clay mineral content. Movable water is mainly distributed in the medium and large pores; the larger the proportion of such pores, the higher the degree of movable water saturation. A lower mineral content will lead to higher movable water saturation in tight sandstone gas reservoirs. These results provide clues for identifying gas-water bearing reservoirs and evaluating and predicting the water production characteristics in gas wells in tight sandstone gas reservoirs

    Model of cross-flow interference index and application for multi-layer commingled production in Sulige tight sandstone gas reservoir, Ordos Basin, China

    No full text
    Multi-layer commingled production is the main feature of gas well development in Sulige tight sandstone gas reservoir, Ordos Basin. Identifying potential interference between layers and devising methods for their characterization are crucial considerations for optimizing the development of gas reservoirs. To address these issues, we designed a physical simulation experiment process and interlayer commingled mining schemes, implementing various interlayer combination modes. The results show that a common occurrence in the process of multi-layer commingled production of tight gas and water layers, whether it involves gas layers production alone or simultaneous production of gas and water layers. This phenomenon involves the crossflow of gas and water between layers, resulting in interlayer interference and a subsequent reduction in gas reservoir recovery. Based on these observations, the concept of an interlayer interference index in multi-layer commingled production in tight sandstone gas reservoirs is proposed. The interference index model is obtained by fitting the multiple linear regression method, showcasing its correlation with the physical properties of the reservoir. High water saturation and a significant permeability ratio of the water layer to the gas layer (exceeding the critical value of 1) can result in the early occurrence of interlayer interference and yield a higher interference index. Furthermore, based on the interference index model, a novel method for productivity evaluation of gas wells in tight gas reservoirs is established. The calculations demonstrate that the interference index curve effectively characterizes the interlayer interference performance of gas wells. The productivity and production performance predictions derived from this model align closely with historical production data, affirming the model's effectiveness and accuracy. Therefore, the interference index model emerges as a valuable tool for predicting the productivity and production performance of gas wells in Sulige tight sandstone gas reservoirs. The research results have important theoretical guidance and practical significance for the efficient development of Sulige tight sandstone gas reservoirs

    Imported and indigenous <i>Plasmodium Vivax</i> and <i>Plasmodium Falciparum</i> malaria in the Hubei Province of China, 2005-2019

    No full text
    Background: the Hubei Province in China reported its last indigenous malaria case in September 2012, but imported malaria cases, particularly those related to Plasmodium vivax and Plasmodium falciparum, threaten Hubei's malaria-free status. This study investigated the epidemiological changes in P. vivax and P. falciparum malaria in this province to provide scientific evidence for preventing malaria resurgence.Methods: The prevalence, demographic characteristics, seasonal features, and geographical distribution of malaria were assessed using surveillance data and were compared across three stages: control stage (2005-2009) and elimination stages I (2010-2014) and II (2015-2019).Results: In 2005-2019, 8483 malaria cases were reported, including 5599 indigenous P. vivax cases, 275 imported P. vivax cases, 866 imported P. falciparum cases, and 1743 other cases. Imported P. falciparum cases accounted for 0.07% of all cases reported in 2005, but increased to 78.81% in 2019. Most imported P. vivax and P. falciparum malaria occurred among males, aged 21-60 years, during elimination stages I and II. The number of regions affected by imported P. falciparum and P. vivax increased markedly in Hubei from the control stage to elimination stage II. Overall, 1125 imported P. vivax and P. falciparum cases were detected from 47 other nations. Eight imported cases were detected from other provinces in China. From the control stage to elimination stage II, the number of cases of malaria imported from African countries increased, and that of cases imported from Southeast Asian countries decreased.Conclusions: Although Hubei has achieved malaria elimination, it faces challenges in maintaining this status. Hence, imported malaria surveillance need to be strengthened to reduce the risk of malaria re-introduction.</p
    corecore