53 research outputs found

    Human Movement Disorders Analysis with Graph Neural Networks

    Get PDF
    Human movement disorders encompass a group of neurological conditions that cause abnormal movements. These disorders, even when subtle, may be symptomatic of a broad spectrum of medical issues, from neurological to musculoskeletal. Clinicians and researchers still encounter challenges in understanding the underlying pathologies. In light of this, medical professionals and associated researchers are increasingly looking towards the fast-evolving domain of computer vision in pursuit of precise and dependable automated diagnostic tools to support clinical diagnosis. To this end, this thesis explores the feasibility of the interpretable and accurate human movement disorders analysis system using graph neural networks. Cerebral Palsy (CP) and Parkinson’s Disease (PD) are two common neurological diseases associated with movement disorders that seriously affect patients’ quality of life. Specifically, CP is estimated to affect 2 in 1000 babies born in the UK each year, while PD affects an estimated 10 million people globally. Considering their clinical significance and properties, we develop and examine the state-of-the-art attention-informed Graph Neural Networks (GNN) for robust and interpretable CP prediction and PD diagnosis. We highlight the significant differences between the human body movement frequency of CP infants and healthy groups, and propose frequency attention-informed convolutional networks (GCNs) and spatial frequency attention based GCNs to predict CP with strong interpretability. To support the early diagnosis of PD, we propose novel video-based deep learning system, SPA-PTA, with a spatial pyramidal attention design based on clinical observations and mathematical theories. Our systems provide undiagnosed PD patients with low-cost, non-intrusive PT classification and tremor severity rating results as a PD warning sign with interpretable attention visualizations

    CP-AGCN: Pytorch-based Attention Informed Graph Convolutional Network for Identifying Infants at Risk of Cerebral Palsy

    Get PDF
    Early prediction is clinically considered one of the essential parts of cerebral palsy (CP) treatment. We propose to implement a low-cost and interpretable classification system for supporting CP prediction based on General Movement Assessment (GMA). We design a Pytorch-based attention-informed graph convolutional network to early identify infants at risk of CP from skeletal data extracted from RGB videos. We also design a frequencybinning module for learning the CP movements in the frequency domain while filtering noise. Our system only requires consumer-grade RGB videos for training to support interactive-time CP prediction by providing an interpretable CP classification result

    Pose-based Tremor Classification for Parkinson's Disease Diagnosis from Video

    Full text link
    Parkinson's disease (PD) is a progressive neurodegenerative disorder that results in a variety of motor dysfunction symptoms, including tremors, bradykinesia, rigidity and postural instability. The diagnosis of PD mainly relies on clinical experience rather than a definite medical test, and the diagnostic accuracy is only about 73-84% since it is challenged by the subjective opinions or experiences of different medical experts. Therefore, an efficient and interpretable automatic PD diagnosis system is valuable for supporting clinicians with more robust diagnostic decision-making. To this end, we propose to classify Parkinson's tremor since it is one of the most predominant symptoms of PD with strong generalizability. Different from other computer-aided time and resource-consuming Parkinson's Tremor (PT) classification systems that rely on wearable sensors, we propose SPAPNet, which only requires consumer-grade non-intrusive video recording of camera-facing human movements as input to provide undiagnosed patients with low-cost PT classification results as a PD warning sign. For the first time, we propose to use a novel attention module with a lightweight pyramidal channel-squeezing-fusion architecture to extract relevant PT information and filter the noise efficiently. This design aids in improving both classification performance and system interpretability. Experimental results show that our system outperforms state-of-the-arts by achieving a balanced accuracy of 90.9% and an F1-score of 90.6% in classifying PT with the non-PT class.Comment: MICCAI 202

    Unifying Human Motion Synthesis and Style Transfer with Denoising Diffusion Probabilistic Models

    Get PDF
    Generating realistic motions for digital humans is a core but challenging part of computer animations and games, as human motions are both diverse in content and rich in styles. While the latest deep learning approaches have made significant advancements in this domain, they mostly consider motion synthesis and style manipulation as two separate problems. This is mainly due to the challenge of learning both motion contents that account for the inter-class behaviour and styles that account for the intra-class behaviour effectively in a common representation. To tackle this challenge, we propose a denoising diffusion probabilistic model solution for styled motion synthesis. As diffusion models have a high capacity brought by the injection of stochasticity, we can represent both inter-class motion content and intra-class style behaviour in the same latent. This results in an integrated, end-to-end trained pipeline that facilitates the generation of optimal motion and exploration of content-style coupled latent space. To achieve high-quality results, we design a multi-task architecture of diffusion model that strategically generates aspects of human motions for local guidance. We also design adversarial and physical regulations for global guidance. We demonstrate superior performance with quantitative and qualitative results and validate the effectiveness of our multi-task architecture

    Denoising Diffusion Probabilistic Models for Styled Walking Synthesis

    Full text link
    Generating realistic motions for digital humans is time-consuming for many graphics applications. Data-driven motion synthesis approaches have seen solid progress in recent years through deep generative models. These results offer high-quality motions but typically suffer in motion style diversity. For the first time, we propose a framework using the denoising diffusion probabilistic model (DDPM) to synthesize styled human motions, integrating two tasks into one pipeline with increased style diversity compared with traditional motion synthesis methods. Experimental results show that our system can generate high-quality and diverse walking motions

    Cerebral Palsy Prediction with Frequency Attention Informed Graph Convolutional Networks

    Get PDF
    Early diagnosis and intervention are clinically con-sidered the paramount part of treating cerebral palsy (CP), so it is essential to design an efficient and interpretable automatic prediction system for CP. We highlight a significant difference between CP infants' frequency of human movement and that of the healthy group, which improves prediction performance. However, the existing deep learning-based methods did not use the frequency information of infants' movement for CP prediction. This paper proposes a frequency attention informed graph convolutional network and validates it on two consumer-grade RGB video datasets, namely MINI-RGBD and RVI-38 datasets. Our proposed frequency attention module aids in improving both classification performance and system interpretability. In addition, we design a frequency-binning method that retains the critical frequency of the human joint position data while filtering the noise. Our prediction performance achieves state-of-the-art research on both datasets. Our work demonstrates the effectiveness of frequency information in supporting the prediction of CP non-intrusively and provides a way for supporting the early diagnosis of CP in the resource-limited regions where the clinical resources are not abundant

    CP-AGCN: Pytorch-based attention informed graph convolutional network for identifying infants at risk of cerebral palsy

    Get PDF
    Early prediction is clinically considered one of the essential parts of cerebral palsy (CP) treatment. We propose to implement a low-cost and interpretable classification system for supporting CP prediction based on General Movement Assessment (GMA). We design a Pytorch-based attention-informed graph convolutional network to early identify infants at risk of CP from skeletal data extracted from RGB videos. We also design a frequency-binning module for learning the CP movements in the frequency domain while filtering noise. Our system only requires consumer-grade RGB videos for training to support interactive-time CP prediction by providing an interpretable CP classification result

    Correlation-Distance Graph Learning for Treatment Response Prediction from rs-fMRI

    Full text link
    Resting-state fMRI (rs-fMRI) functional connectivity (FC) analysis provides valuable insights into the relationships between different brain regions and their potential implications for neurological or psychiatric disorders. However, specific design efforts to predict treatment response from rs-fMRI remain limited due to difficulties in understanding the current brain state and the underlying mechanisms driving the observed patterns, which limited the clinical application of rs-fMRI. To overcome that, we propose a graph learning framework that captures comprehensive features by integrating both correlation and distance-based similarity measures under a contrastive loss. This approach results in a more expressive framework that captures brain dynamic features at different scales and enables more accurate prediction of treatment response. Our experiments on the chronic pain and depersonalization disorder datasets demonstrate that our proposed method outperforms current methods in different scenarios. To the best of our knowledge, we are the first to explore the integration of distance-based and correlation-based neural similarity into graph learning for treatment response prediction.Comment: Proceedings of the 2023 International Conference on Neural Information Processing (ICONIP

    Study on overlying strata containing primary fractures migration and spatial-temporal characteristics of water gushing (leaching) caused by mining field disturbance

    Get PDF
    The super-thick, high-pressure, medium-strong water-rich Luohe Formation aquifer is overlying in the Binchang mining area of Shanxi Province, and the fractures in the overlying rock are developed, it makes the water channel easier to communicate with the aquifer and stope of Luohe Formation, resulting in the increase of water inflow and area in the stope. In order to study the morphological characteristics of water inrush induced by the network of water-conducting channels formed by primary fractures communicating with the aquifer of the thick Luohe Formation under the influence of mining, the solid-flow coupling similar material simulation test was carried out based on the similar simulation physical experiment system of water-sand inrush in overburden rock. The results show that when the working face is advanced to 140 m, the lower strata of the bed separation are broken in advance due to the influence of the primary fractures. The left incomplete bed separation space and the triangular space formed by the right cantilever beam support form the “Z” bed separation space. When the working face is advanced to 160 m, two “Z-type” bed separation spaces are developed in the overlying strata, which are interconnected with the primary fractures and mining-induced fractures to form a water channel network. The form of gushing (leaching) water in the stope changed from ‘ drip-drip and flow-flow-multi-state ’, and the overall gushing (leaching) water volume increased first and then decreased. The water pressure of overlying strata and the advancing distance of the working face show a segmented evolution characteristic of decreasing first and then increasing. The minimum interval and the position of the inflection point of the segmentation increase with the increase of the distance between the monitoring point and the open-off cut. The final water pressure values near the central area of the goaf are greater than the two boundary monitoring points. The analysis results show that the existence of primary fractures promotes the development of water-conducting fracture channel network, accelerates the process of water transport, and induces the formation and development of water gushing (leaching) in the stope. The research results clarify the influence of primary fractures on the distribution characteristics of water conduction channel network and the evolution law of water gushing (leaching) form morphology, and explain the conduction mechanism of thick and high confined aquifer water to stope water inrush
    corecore