42 research outputs found

    Brine Shrimp Diversity in China Based on DNA Barcoding

    Get PDF

    Analysis of Transcriptome and Epitranscriptome in Plants Using PacBio Iso-Seq and Nanopore-Based Direct RNA Sequencing

    Get PDF
    Nanopore sequencing from Oxford Nanopore Technologies (ONT) and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) long-read isoform sequencing (Iso-Seq) are revolutionizing the way transcriptomes are analyzed. These methods offer many advantages over most widely used high-throughput short-read RNA sequencing (RNA-Seq) approaches and allow a comprehensive analysis of transcriptomes in identifying full-length splice isoforms and several other post-transcriptional events. In addition, direct RNA-Seq provides valuable information about RNA modifications, which are lost during the PCR amplification step in other methods. Here, we present a comprehensive summary of important applications of these technologies in plants, including identification of complex alternative splicing (AS), full-length splice variants, fusion transcripts, and alternative polyadenylation (APA) events. Furthermore, we discuss the impact of the newly developed nanopore direct RNA-Seq in advancing epitranscriptome research in plants. Additionally, we summarize computational tools for identifying and quantifying full-length isoforms and other co/post-transcriptional events and discussed some of the limitations with these methods. Sequencing of transcriptomes using these new single-molecule long-read methods will unravel many aspects of transcriptome complexity in unprecedented ways as compared to previous short-read sequencing approaches. Analysis of plant transcriptomes with these new powerful methods that require minimum sample processing is likely to become the norm and is expected to uncover novel co/post-transcriptional gene regulatory mechanisms that control biological outcomes during plant development and in response to various stresses

    Light Regulation of Alternative Pre‐mRNA Splicing in Plants

    No full text

    Genome-Wide Identification of NAP1 and Function Analysis in Moso Bamboo (<i>Phyllostachys edulis</i>)

    No full text
    The nucleosome assembly protein 1 (NAP1) family is the main histone chaperone of histone H2A–H2B. To explore the function of NAP1 family genes in moso bamboo (Phyllostachys edulis), characterized by extremely rapid growth and a long flowering cycle, we originally conducted a genome-wide analysis of the PheNAP1 gene. The phylogenetic relationship, gene expression pattern, DNA methylation, and histone modification were analyzed. Eventually, 12 PheNAP1 genes were recognized from the Phyllostachys edulis genome, divided into two sorts: the NRP subfamily (four members) and the NAP subfamily (eight members). Highly conserved motifs exist in each subfamily, which are distinct between subfamilies. PheNAP1 was distributed homogeneously on 10 out of 24 chromosomes, and gene duplication contributed significantly to the enhancement of the PheNAP1 gene in the genome. Cis-acting element analysis showed that PheNAP1 family genes are involved in light, hormone, and abiotic stress responses and may play an important role in the rapid growth and flowering. PheNAP1 exhibited the highest expression level in fast-growing shoots, indicating it is closely associated with the rapid growth of moso bamboo. Besides, PheNAP1 can rescue the early-flowering phenotype of nrp1-1 nrp2-2, and it affected the expression of genes related to the flowering pathway, like BSU1, suggesting the vital role that PheNAP1 may take in the flowering process of moso bamboo. In addition, histone modification results showed that PheNAP1 could bind to phosphorylation-, acetylation-, and methylation-modified histones to further regulate gene expression. A sketch appears: that PheNAP1 can accompany histones to regulate fast-growth- and flowering-related genes in moso bamboo. The consequences of this study enrich the understanding of the epigenetic regulation mechanism of bamboo plants and lays a foundation for further studies on the role of the NAP1 gene in Phyllostachys edulis and the function of chromatin regulation in forest growth and development
    corecore