
fgene-10-00253 March 19, 2019 Time: 19:52 # 1

REVIEW
published: 21 March 2019

doi: 10.3389/fgene.2019.00253

Edited by:
Jiannis Ragoussis,

McGill University, Canada

Reviewed by:
Milind Ratnaparkhe,

ICAR Indian Institute of Soybean
Research, India
Paweł P. Łabaj,

University of Natural Resources
and Life Sciences Vienna, Austria

*Correspondence:
Lianfeng Gu

lfgu@fafu.edu.cn
Anireddy S. N. Reddy

Anireddy.Reddy@colostate.edu;
reddy@colostate.edu

Specialty section:
This article was submitted to
Genomic Assay Technology,

a section of the journal
Frontiers in Genetics

Received: 15 October 2018
Accepted: 06 March 2019
Published: 21 March 2019

Citation:
Zhao L, Zhang H, Kohnen MV,

Prasad KVSK, Gu L and Reddy ASN
(2019) Analysis of Transcriptome

and Epitranscriptome in Plants Using
PacBio Iso-Seq and Nanopore-Based

Direct RNA Sequencing.
Front. Genet. 10:253.

doi: 10.3389/fgene.2019.00253

Analysis of Transcriptome and
Epitranscriptome in Plants Using
PacBio Iso-Seq and Nanopore-Based
Direct RNA Sequencing
Liangzhen Zhao1, Hangxiao Zhang1, Markus V. Kohnen1, Kasavajhala V. S. K. Prasad2,
Lianfeng Gu1* and Anireddy S. N. Reddy2*

1 Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied
Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China, 2 Program in Cell and Molecular Biology,
Department of Biology, Colorado State University, Fort Collins, CO, United States

Nanopore sequencing from Oxford Nanopore Technologies (ONT) and Pacific
BioSciences (PacBio) single-molecule real-time (SMRT) long-read isoform sequencing
(Iso-Seq) are revolutionizing the way transcriptomes are analyzed. These methods offer
many advantages over most widely used high-throughput short-read RNA sequencing
(RNA-Seq) approaches and allow a comprehensive analysis of transcriptomes in
identifying full-length splice isoforms and several other post-transcriptional events. In
addition, direct RNA-Seq provides valuable information about RNA modifications, which
are lost during the PCR amplification step in other methods. Here, we present a
comprehensive summary of important applications of these technologies in plants,
including identification of complex alternative splicing (AS), full-length splice variants,
fusion transcripts, and alternative polyadenylation (APA) events. Furthermore, we
discuss the impact of the newly developed nanopore direct RNA-Seq in advancing
epitranscriptome research in plants. Additionally, we summarize computational tools
for identifying and quantifying full-length isoforms and other co/post-transcriptional
events and discussed some of the limitations with these methods. Sequencing of
transcriptomes using these new single-molecule long-read methods will unravel many
aspects of transcriptome complexity in unprecedented ways as compared to previous
short-read sequencing approaches. Analysis of plant transcriptomes with these new
powerful methods that require minimum sample processing is likely to become
the norm and is expected to uncover novel co/post-transcriptional gene regulatory
mechanisms that control biological outcomes during plant development and in response
to various stresses.

Keywords: SMRT isoform sequencing, nanopore direct RNA sequencing, RNA modification, alternative splicing,
alternative polyadenylation, epitranscriptome
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INTRODUCTION

Analysis of transcriptomes, which represent the activity of genes
in the genome, is vital for understanding the relationship between
genotype and phenotype. The dynamics and complexity of
transcriptome regulate all aspects of plant growth, development,
and responses to various external biotic and abiotic cues.
Different methods such as expressed sequence tag (EST)
sequencing (Wu et al., 2002), serial analysis of gene expression
(SAGE) (Matsumura et al., 1999), DNA microarray (Hihara
et al., 2001), and recently RNA sequencing (RNA-Seq) using
next-generation sequencing (NGS) technologies (Mortazavi
et al., 2008) have been developed to analyze transcriptomes.
Since 2005, second-generation short-read sequencing platforms
quickly replaced first-generation Sanger sequencing technology
for various high-throughput applications due to lower costs and
greater sequencing depth (Sedlazeck et al., 2018). However, the
read length is the major limitation in second-generation short-
read sequencing, which made it harder to analyze several aspects
of co/post-transcriptional processing events. To overcome this
limitation, in the past few years, researchers are sequencing
full-length transcripts mostly using two platforms, Pacific
BioSciences (PacBio) (Rhoads and Au, 2015) and Oxford
Nanopore Technologies (ONT) (Bayega et al., 2018), which
are referred to as “third” and “fourth” generation sequencing
technologies, respectively (Slatko et al., 2018). These two
platforms increased read length considerably as compared to
other NGS methods and can, therefore, be used to address
a larger variety of research questions. Single-molecule real-
time (SMRT) isoform sequencing (Iso-Seq) using PacBio
platform captures the full length of transcripts (Gonzalez-
Garay, 2016) and thereby presents easier and more accurate
ways for different applications, such as gene annotation (Zhao
et al., 2018), isoform identification (Abdel-Ghany et al., 2016;
Wang T. et al., 2017), identification of fusion transcripts
(Weirather et al., 2015), and long non-coding RNA (lncRNA)
discovery (Li et al., 2016). Here, we discuss applications and
broader utility of PacBio and ONT in transcriptome studies.
Recently developed direct RNA-Seq using nanopore can avoid
amplification biases (Garalde et al., 2018). Furthermore, this
technology has the potential to provide a complete view of RNA
modifications such as N6-methyladenosine, 5-methylcytidine,
and 5-hydroxylmethylcytidine (Li X. et al., 2017), which are
collectively referred to as the “epitranscriptome.”

Parts of the core algorithm for PacBio and ONT long-read
analyses are similar to short-read analysis strategies used in
second-generation sequencing approaches. Nevertheless, specific
new bioinformatics tools have been designed for several of the
applications, which have not been part of second-generation
sequencing pipelines. These tools are needed to provide greater
flexibility to achieve different goals as well as to address new
issues, such as higher error rates and low throughput. We present
currently available bioinformatics methods for PacBio and ONT
read analysis, including reads-of-interest (ROI) extraction, error
correction (Au et al., 2012), mapping (Wu and Watanabe, 2005),
isoform clustering (Fu et al., 2012), and identification of multiple
transcript isoforms (Abdel-Ghany et al., 2016). Improvements in

these new methods and computational pipelines will expand the
landscape of transcriptome complexity at the transcript isoform
and epitranscriptome level with higher throughput and higher
accuracy. Here, we discussed PacBio Iso-Seq and ONT direct
RNA-Seq methodologies, the current status of bioinformatics
tools used to analyze the long-reads and highlighted various
applications of these methods.

LIBRARY PREPARATION AND
EXTRACTION OF READ-OF-INSERT
FROM PACBIO ISO-SEQ

Generally, high-quality RNA is poly(A) selected to construct
PacBio long-read sequencing libraries using, e.g., Clontech
SMARTer PCR kit (Ramsköld et al., 2012; Li et al., 2016).
The length of sequencing reads is dependent on the quality
of RNA and generation of full-length cDNAs. To enrich for
full-length cDNAs in the library, cap-dependent linker ligation
method has been used (Cartolano et al., 2016). Alternatively,
full-length RNAs can be enriched by combining poly(A)+ RNA
selection with capturing of 5′ capped mRNAs using a cap-
binding protein (Blower et al., 2013). Full-length mRNA is
then used for first-strand cDNA synthesis with oligo (dT)
primer followed by second-strand cDNA synthesis with a size
selection of full-length cDNA in several different sizes (Xu
et al., 2015). With the new Sequel system, cDNAs can be
sequenced without size selection. By ligating hairpin adaptors
to double-stranded cDNA, SMRTbellTM libraries are generated
which can be subsequently sequenced on either the RSII or
Sequel platform (Xu et al., 2017). Comparison of 5′ ends with
annotated transcript start sites shown that this protocol enables
full-length cDNA sequencing with little loss of 5′ or 3′ ends
(Ramsköld et al., 2012).

At present, PacBio offers two fourth-generation sequencers:
the RSII was the first commercially available sequencing
instrument and the recently improved Sequel device provides
much higher throughput (up to 20 Gb per SMRT Cell).
PacBio’s sequencing strategy is based on the usage of zero-
mode waveguide (ZMW) technology, which consists of tiny
nano-wells initially described in 2003 (Levene et al., 2003).
The ZMWs allow the immobilization of sequencing templates
through the interaction with the sequencing engine, a polymerase
enzyme complex, which is affixed at the bottom of ZMWs
(Rhoads and Au, 2015). Then the incorporation of fluorescent-
labeled DNA bases emits fluorescent signals that are captured
by a detector in real time (McCarthy, 2010). Hairpin adaptors
that are added to both ends of double-stranded DNA during
library preparation generate a closed circular DNA template,
which could be repeatedly traversed by long lifetime polymerase
to improve the accuracy. In this way, PacBio platform could
generate multiple subreads including adapter sequences in a
single ZMW and yield a continuous long read (CLR), which can
generate more accurate circular consensus sequence (CCS) reads
(Weirather et al., 2017).

Subsequently, the RSII system and the Sequel system store the
base-call data and associated quality metrics in HDF5 and BAM
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FIGURE 1 | Different applications and bioinformatics solutions for PacBio Iso-Seq and Nanopore direct RNA sequencing in plants. Iso-seq and direct RNA
sequencing can be performed using the SMRT analysis from PacBio and MinKNOW from ONT, respectively. Then these long reads with FASTA format will undergo
error correction step before downstream analysis. In order to deal with different applications (middle boxes), computational tools used to process and analyze
long-reads for each application are indicated for species without and with reference genomes in left and right boxes, respectively.

files format, respectively. The bax2bam tool can convert HDF5
file format into BAM format1.

The SMRT Analysis module from SMRT Link from PacBio
is adopted for obtaining effective subreads (Figure 1). Then
extraction of ROI for each ZMW is the second step in PacBio
Iso-Seq bioinformatics analysis workflow. This step is performed
with the SMRT Link pipeline, which includes steps for trimming
adapters and generating CCSs. Then ROIs are cleaned of
polyA/T tails, primers, artificial concatemers, and transcript
strand direction is identified (Bayega et al., 2018). ToFu Pacbio
pipeline from SMRT Analysis package can be used to search
for sequencing adapters for extracting ROI and full-length non-
chimeric (FLNC) reads (Wang T. et al., 2017; Xu et al., 2017).
Afterward, the FLNC reads, which contain both 5′ and 3′ primers
and poly-A tail, can be analyzed using iterative clustering for
error correction (ICE) to build consensus clusters to improve

1https://github.com/PacificBiosciences/PacBioFileFormats/wiki/BAM-recipes

consensus accuracy. Subsequently, PacBio RS II and Sequel use
Quiver and Arrow to polish consensus sequences, respectively
(Bayega et al., 2018).

LIBRARY CONSTRUCTION AND
BASE-CALLING FOR NANOPORE
DIRECT RNA SEQUENCING

The starter pack for direct RNA-Seq costs only $1000 (pricing
as of January 2019), which includes one MinION sequencer,
two flow cells, one sequencing kit, and a wash kit2. Compared
to NGS or PacBio, the MinION is portable (weighs 90 g),
real-time, long-read, and low-cost device. It is also possible
to use the SMARTer protocol for full-length cDNA synthesis
(Ramsköld et al., 2012), which includes end-repair, dA-Tailing,

2https://nanoporetech.com
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and adapter ligation. However, this kind of library construction
will remove all RNA modification information during double-
strand cDNA synthesis. The Nanopore direct RNA library
construction workflow uses poly(dT) adapter and SuperScript III
Reverse Transcriptase to generate RNA–DNA hybrids, which are
subsequently ligated to nanopore sequencing adapters using T4
DNA ligase prior to sequencing. Then Agencourt RNAClean XP
magnetic beads are used to purify RNA–DNA duplexes3. After
estimating the sample concentration, the Nanopore direct RNA
library can be loaded into flow cells using MinION, GridION, or
PromethION sequencer. Compared to the MinION, the GridION
and PromethION sequencers provide higher throughput. The
motor protein pulls the 3′ end of the RNA strand inside the
nanopore channel (Bayega et al., 2018). Then changes in the ionic
current are detected at each pore by a sensor.

Prior to sequencing, the computer hardware should be
checked to meet the minimum requirement. The minimal
requirements for MinION are: CPU: i7 or Xeon with 4+
cores, memory: 16 GB RAM, storage: 1 TB internal SSD,
ports: USB34. Any computer with above minimal requirements
can run a MinION without deterioration of performance
during sequencing. Desktop or laptop computer with a
MinKNOW and EPI2ME Desktop Agent installation provided
by Oxford Nanopore and Metrichor Ltd., respectively, need to
be connected with MinION (Figure 1). MinKNOW controls the
MinION device, tests hardware, checks flow cells, and performs
sequencing runs. EPI2ME further analyzes the raw electrical
signals generated and stores in FAST5 files, which serve as
input for Metrichor for base-calling. Then FASTQ and FASTA
sequences can be extracted from FAST5 files using poretools
(Loman and Quinlan, 2014). However, detection tools to identify
base modifications are currently not available. The majority of the
applications using Nanopore direct RNA-Seq have been focused
on mammals. At present, Nanopore direct RNA-Seq has not
been reported for studies on plants. However, it is anticipated
that more and more laboratories will use this tool to study RNA
modifications in plants.

LONG-READ PREPROCESSING: ERROR
CORRECTION, MAPPING, AND
CLUSTERING OF LONG-READS

Although the length of PacBio and ONT reads is longer than
NGS, one common concern regarding these technologies is high
error rates (Koren et al., 2012). Thus, it is necessary to reduce
the error rate before subsequent utilization. At present, correcting
PacBio and ONT reads fall into three distinct categories: hybrid
error correction strategy, self-correction method, and reference-
based error correction.

Hybrid error correction strategy uses short reads from NGS
to correct long reads. LSC (Au et al., 2012), LoRDEC (Salmela
and Rivals, 2014), and PacBioToCA (Koren et al., 2012) are three
widely used methods for error correction (Figure 1). Unlike LSC

3https://nanoporetech.com
4https://community.nanoporetech.com

and PacBioToCA, LoRDEC avoids mapping of short reads by
building short reads De Bruijn graph (DBG) of order k and
threads the long reads through this short reads DBG to correct.
Thus LoRDEC requires less time/memory and less disk space
(Salmela and Rivals, 2014). Recently, Nanocorr was developed
specifically to correct Nanopore long reads using high-quality
short reads (Goodwin et al., 2015).

Alternatively, self-correction software is distinct from the
above hybrid error correction strategy, which depends on short-
reads. Long-read multiple aligner (LoRMA) is one of the methods
for error correction that relies only on long reads (Salmela
et al., 2016). Compared to another self-correction method PacBio
corrected reads (PBcR) algorithm (Koren et al., 2012), LoRMA
achieved higher throughput and lower error rate. However, self-
correction method needs a high coverage in order to obtain
accurate correction, which limits its application.

The third method provides reference-based error correction
during alignment of long reads to reference genome and some
tools that do this type of error correction are minimap2 (Li, 2018)
and minialign5. These are fast and accurate alignment tools for
PacBio and Nanopore long reads with high insertion and deletion
error rate. Transcriptome Analysis Pipeline from Isoform
Sequencing (TAPIS) (Abdel-Ghany et al., 2016) also performs
reference-based error correction. In addition to minimap2,
GMAP (Wu and Watanabe, 2005) and STAR (Dobin et al., 2013)
are two splice-aware aligners, which can be used for mapping
full-length reads to reference genome for downstream analysis.
However, GMAP and STAR do not perform error correction
during mapping. In addition to canonical splice sites, GMAP
and STAR capture non-canonical splice sites, hence should be
cautious during downstream AS analysis. Compared to GMAP,
minimap2 is more consistent with existing annotation and works
well with noisy reads (Li, 2018).

Highly expressed genes could generate multiple identical
isoforms, which would take more time for downstream
processing/analyses and are hard to visualize without collapsing
redundant reads. Clustering step could group full-length reads
into a cluster, which is a necessary step to further improve quality
and identify unique splicing isoforms. After mapping Iso-Seq
to reference genome, Cupcake ToFU could be used to collapse
redundant isoforms and obtain unique isoforms6. The majority
of clustering strategies used for species without reference genome
have been developed for ESTs, which appeared before the age of
PacBio and ONT. Clustering programs designed for ESTs, such as
UCLUST (Edgar, 2010) and CD-HIT (Fu et al., 2012), are widely
used to group and collapse redundant sequences. However, these
methods were not designed for full-length sequences with high
error rates as compared to ESTs or short reads from NGS.
At present, there are two de novo algorithms for clustering of
long reads by genes: the ICE algorithm (Gordon et al., 2015)
can cluster FLNC reads from PacBio sequencing to generate
consensus isoforms and the CARNAC-LR algorithm designed
for ONT long-read sequencing data (Marchet et al., 2018). After
collapsing the redundant isoforms, the read count information

5https://github.com/ocxtal/minialign
6https://github.com/Magdoll/cDNA_Cupcake
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for expression levels would be lost. If expression level analysis
needs to be performed, one can go back and retrieve the read
counts from the original sequencing files.

APPLICATIONS AND BIOINFORMATICS
TOOLS FOR ISO-SEQ AND NANOPORE
DIRECT RNA SEQUENCING IN PLANTS

At present, PacBio and ONT deep sequencing are increasingly
used for genome annotation, identification of co/post-
transcriptional events and fusion transcripts. Recently, several
studies collected and reanalyzed long reads from Iso-Seq into
comprehensive databases such as Plant ISOform sequencing
database (PISO) (Feng et al., 2019) and ISOdb (Xie et al.,
2018). ISOdb and PISO deposited 8 and 19 species, respectively.
Since the new technology has a higher resolution than second-
generation sequencing and detects modified RNA bases,
additional aspects of transcriptional and post-transcriptional
regulation can be studied more comprehensively. Therefore, we
highlight bioinformatics solutions and various applications that
are difficult to investigate using NGS.

DE NOVO GENOME ANNOTATION, NEW
LOCUS IDENTIFICATION, AND GENE
MODEL CORRECTION

For species without an available reference genome, such as
Drynaria roosii (Sun et al., 2018) and Asparagus officinalis
(Kakrana et al., 2018), Iso-Seq was successfully used recently
to capture the complete and full-length transcriptome. Due to
the longer reads from PacBio and ONT, Iso-Seq has proven to
be more advantageous in resolving many complex features in
transcriptomes when compared to short-read RNA-Seq, which
depends on software for reconstructing transcript sequences
(Haas et al., 2013; Steijger et al., 2013). Thus, one key advantage
of long-reads from PacBio and ONT was to accurately infer
gene models by generating full-length transcripts without further
assembly, which is challenging for complex isoforms (Gordon
et al., 2015). The utility of long-read transcripts in inferring gene
models has been reported in medicinal herb Panax ginseng (Jo
et al., 2017; Kim et al., 2018),allohexaploid wheat (Clavijo et al.,
2017), bread wheat (Cartolano et al., 2016), sugar beet (Minoche
et al., 2015), the coffee bean (Cheng et al., 2017), and Para rubber
tree (Pootakham et al., 2017). Full-length transcripts generated
by Iso-Seq are ideal for improving gene model prediction and
identification of novel genes, which do not map to annotated gene
loci. For example, recent studies revealed 2171 novel genes in
Sorghum bicolor (Abdel-Ghany et al., 2016), 8091 in Phyllostachys
edulis (Wang T. et al., 2017), and 3026 in Triticum aestivum
(Gordon et al., 2015). Also in Populus trichocarpa (Filichkin
et al., 2018), allopolyploid cotton (Wang et al., 2018), and
Populus “Nanlin 895” (Chao Q. et al., 2018), 15,087, 13,551,
and 1575 novel transcribed regions, respectively, were recently
identified. In addition to isoform and new locus identification,
Iso-Seq has been used to refine gene models in Vitis vinifera

cv. Cabernet Sauvignon (Minio et al., 2018) and allopolyploid
cotton (Wang et al., 2018). Furthermore, recent studies corrected
178 and 2241 annotated genes, which covered more than one
transcript assemblies in S. bicolor (Abdel-Ghany et al., 2016)
and P. edulis (Wang T. et al., 2017), respectively. Program to
Assemble Spliced Alignments (PASA) is one bioinformatics tool
that corrects such gene annotations (Haas et al., 2008). Recently,
long-read annotation (LoReAn) pipeline used a combination of
PacBio SMRT or MinION long-reads and other information such
as protein evidence for gene annotation (Cook et al., 2019).

CHARACTERIZATION OF ALTERNATIVE
TRANSCRIPTION INITIATION,
ALTERNATIVE POLYADENYLATION, AND
ALTERNATIVE SPLICING

Alternative transcription initiation (ATI), alternative cleavage
and alternative polyadenylation (APA), and alternative splicing
(AS) events are three major processes that contribute to
transcriptome diversity. AS of precursor mRNAs (pre-mRNAs)
can potentially increase the number of protein isoforms produced
from multiexon genes and regulate gene expression through
multiple mechanisms such as altered translational efficiency
of splice isoforms, non-sense-mediate decay, and miRNA-
medicated mRNA degradation (Reddy et al., 2013). Though
individual AS events can be quantified and annotated using NGS
with great accuracy, it is hard to deduce full-length splicing
isoforms that contain a combination of these individual AS
events (Steijger et al., 2013). Long-read sequencing provides
the possibility to obtain full-length sequences and thus identify
complex splice isoforms, which are hard to detect and reconstruct
by NGS. Iso-Seq has allowed identification of over 110,00
non-redundant isoforms in Zea mays (Wang et al., 2016),
>42,000 in P. edulis (Wang T. et al., 2017), and >16,000
in Salvia miltiorrhiza (Xu et al., 2015). Additionally, Iso-
Seq identified 29,730 novel isoforms in Trifolium pratense L.,
2501 new alternative transcripts in V. vinifera cv. Cabernet
Sauvignon (Minio et al., 2018), and over 11,000 novel splice
isoforms in S. bicolor L. Moench (Abdel-Ghany et al., 2016). For
35.74% of the unigenes of bermudagrass, three or more distinct
isoforms were identified using Iso-Seq (Zhang B. et al., 2018).
In the wild strawberry Fragaria vesca, Iso-Seq revealed that pre-
mRNAs from ∼58% of multiexon genes are alternatively spliced
(Li Y. et al., 2017).

In addition to the full-length isoform detection, AS events
can be classified into five different types: retained intron (RI),
skipped exon (SE), alternative 5′ splicing site (A5SS), alternative
3′ splicing site (A3SS), and mutually exclusive exons (Shen
et al., 2014). In addition to above five common categories,
many other complex types, such as alternative position, i.e.,
alternative 3′ and 5′ site (Wang and Brendel, 2006), AS
and transcriptional initiation (ASTI) (Nagasaki et al., 2006)
alternative first exons (Chen et al., 2007), and composite
patterns (Wang and Rio, 2018), can occur. Although NGS
can detect these AS events, long reads from PacBio and ONT
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provide an advantage on detecting AS events because long-read
sequencing could avoid any possible issues during transcriptome
reconstruction. For example, Iso-Seq revealed 10,053, 172,743,
133,229, and 21,154 AS events in S. bicolor (Abdel-Ghany
et al., 2016), Z. mays (Wang et al., 2016), allopolyploid
cotton (Wang et al., 2018), and P. edulis (Wang T. et al.,
2017), respectively.

Alternative polyadenylation has multiple regulatory roles
in RNA transportation, localization, stability, and translation
by producing isoforms with different 3′ cleavage sites, which
generates transcript diversity and complexity (Tilgner et al.,
2015; Abdel-Ghany et al., 2016; Wang T. et al., 2017). For
APA identification using NGS, Poly(A) Site Sequencing (PAS-
Seq) libraries can be constructed using degenerate nucleotides
in combination with oligo(T) primers (Shepard et al., 2011;
Zhang et al., 2015). Internal priming issue was defined as cDNA
primers hybridizing to internal continuous As instead of the
actual poly(A) tail (Beaudoing et al., 2000). If six continuous
As or more than seven As existed in a 10 nt window, it was
internal priming candidate (Tian et al., 2005). PAS-Seq based
on NGS methods could not avoid the internal priming because
internal A-rich sequences could prime the oligo(dT) (Nam et al.,
2002; Sherstnev et al., 2012). Both Iso-Seq and Nanopore direct
RNA-Seq methods could avoid internal priming. Using Iso-
Seq, 7700 genes containing two or more polyadenylation sites
have recently been detected in S. bicolor (Abdel-Ghany et al.,
2016). In allopolyploid cotton, 6935 genes have at least five
poly(A) sites (Wang et al., 2018). At present, quantification
analysis of APA still depends on NGS due to the low sequence
depth of Iso-Seq and Nanopore direct RNA-Seq. A recent study
in P. edulis used a method that combined NGS with Iso-Seq
to identify 1224 differential APA sites (Wang T. et al., 2017).
In the future, it is expected that both Iso-Seq and Nanopore
direct RNA-Seq can be used for quantification analysis once the
throughput increases.

Alternative transcription initiation is another key mechanism
to generate diverse transcripts (Tanaka et al., 2009). Alternative
usage of transcription start sites attracted little attention in
plants as compared to the studies on AS and APA. Paired-
end analysis of transcription start sites (PEAT) strategy, which
requires complex library construction, following NGS has been
used for monitoring global transcription start site usage (Ni
et al., 2010). Using the PEAT protocol, millions of transcription
start sites that fall into three categories have been identified in
Arabidopsis roots (Morton et al., 2014). Since PacBio Iso-Seq and
Nanopore direct RNA-Seq can sequence full-length transcripts
from 5′ ends to polyadenylated tails, it would be a perfect
tool to detect ATI.

For traditional RNA-Seq, the identification of the major
AS events, including exon skipping events, intron retention,
alternative 5′ donor, and alternative 3′ donor usage is quite simple
by using several tools, including rMATS (Shen et al., 2014), JUM
(Wang and Rio, 2018), PASA pipeline (Campbell et al., 2006), and
ASTALAVISTA (Foissac and Sammeth, 2007). For the analysis of
post-transcriptional regulation based on long-read sequencing,
TAPIS pipeline (Abdel-Ghany et al., 2016) and PRAPI (Gao et al.,
2017) are two main bioinformatics tools that use Iso-Seq reads to

identify AS and APA (Figure 1). In addition, PRAPI (Gao et al.,
2017) can also identify several other events/processes, such as
ATI, and production of circular RNAs (circRNAs).

IDENTIFICATION OF FUSION
TRANSCRIPTS

Fusion transcripts are the result of a trans-splicing event
(Li et al., 2008) that joins two separately encoded pre-RNAs
into one transcript. Fusion transcripts have been identified
in diverse plant species (Zhang et al., 2010; Wang et al.,
2016). Paired-end RNA-Seq datasets based on NGS have been
successfully analyzed for fusion transcript (Maher et al., 2009).
Recently, Iso-Seq provided a more reliable way to identify
fusion transcripts. In total, 1430 fusion transcripts had been
detected in Z. mays using Iso-Seq (Wang et al., 2016).
Furthermore, 3762 and 222 fusion transcripts were identified in
T. pratense L (Chao Y. et al., 2018) and allopolyploid cotton
(Wang et al., 2018), respectively.

The standard for fusion transcript identification is based on
the simple idea that two or more fragments from one transcript
can be mapped to several loci (Wang et al., 2016). Multiple
fusion transcript detection algorithms based on NGS have been
developed (Liu S. et al., 2015). However, these algorithms
were specially designed for paired-end RNA-Seq data. PacBio
pbtranscript-ToFU package provides a script to detect fusion
transcripts (fusion_finder.py)7, which is specially designed for
reads from Iso-Seq. Isoform Detection and Prediction (IDP)
fusion (Figure 1) also presents another algorithm to detect
fusion events using both PacBio long-read sequencing and NGS
(Weirather et al., 2015).

lncRNA IDENTIFICATION

Long ncRNAs are defined as RNAs with more than 200 nt and
have no discernable coding potential (Jin et al., 2013). In plants,
lncRNAs can be generated from intergenic, intronic, or coding
regions and play an important role in gene regulation (Wang and
Chekanova, 2017). The majority of lncRNAs are polyadenylated
in plants, thus RNA-Seq on Illumina platforms can also detect
the expression of lncRNAs. However, recent studies showed
that lncRNAs undergo complex post-transcriptional regulation
(Liu J. et al., 2015). Thus, full-length sequencing provides a
great advantage in identifying gene model of lncRNAs. Recently,
several studies reported the identification of lncRNAs using
Iso-Seq in plants. For example, PacBio Iso-Seq revealed 1187
and 4333 lncRNAs in poplar “Nanlin 895” (Chao Q. et al.,
2018) and T. pratense L. (Chao Y. et al., 2018), respectively.
These studies suggested that Iso-Seq is a well-suited method
for identification of lncRNAs. GreeeNC and CANTATAdb are
two resources to search for sequence homology of lncRNAs
from long reads, which have been reported in P. edulis
(Wang T. et al., 2017). Also, long reads containing sequence

7https://github.com/PacificBiosciences
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homology to miRNAs could also be regarded as non-coding
RNA, as has been reported in S. bicolor (Abdel-Ghany et al.,
2016). In Z. mays, lncRNAs were identified using PLEK, a
classification model trained on known high-confidence lncRNAs
(Wang et al., 2016).

NATURAL ANTISENSE TRANSCRIPTS
IDENTIFICATION

Natural antisense transcripts (NATs) including head-to-head,
tail-to-tail, and fully overlapping types have been shown
to function in transcriptional and post-transcriptional gene
regulation (Faghihi and Wahlestedt, 2009). In total, 932 cis-NATs
were identified using a strand-specific PacBio SMRT dataset by
performing pair-wise comparisons of overlapping coordinates
from oppositely oriented full-length transcripts (Zhang H. et al.,
2018). Furthermore, PRAPI was developed to identify NAT based
on PacBio/ONT long reads (Gao et al., 2017). At the same time,
PRAPI can also quantify the expression of NAT by combining
NGS reads using strand-specific library construction (Figure 1).

ANALYSIS OF LONG-READS IN THE
ABSENCE OF A REFERENCE GENOME

Due to recent developments in long-read sequencing, more
and more genome sequencing studies are using long-read
sequencing platforms to obtain longer reads than N50, such as
de novo assembling of grass Oropetium thomaeum (VanBuren
et al., 2015), sunflower (Badouin et al., 2017), and citrus
(Wang X. et al., 2017). However, there are still many species
without available genome sequences. Thus, it will be valuable
to develop reference-free analyses for transcription annotation
using Trinity (Haas et al., 2013) and other tools for post-
transcriptional analysis. Recent studies have shown that it is
feasible to reconstruct full-length transcript models for species
without a reference genome, such as Astragalus membranaceus
(Li J. et al., 2017), Arabidopsis pumila (Yang et al., 2018),
and Zanthoxylum bungeanum Maxim (Tian et al., 2018)
using long reads.

Recently, AS_de_novo8 has reported AS identification based
on Iso-Seq without reference genomes (Liu et al., 2017). The basic
idea originated from searching for the deletion or insertion in
the clustering units (Ner-Gaon et al., 2007; Zhou et al., 2011;
Wu et al., 2014; Liu et al., 2017). Thus, clustering long reads
from PacBio Iso-Seq or ONT should be the first step before AS
identification. Several clustering programs, such as the widely
used CD-HIT, can be used for this analysis (Fu et al., 2012).
Recently, one clustering approach designed for Oxford Nanopore
long reads has been released (Marchet et al., 2018). After the
clustering step, all-vs-all BLAT comparison can be used for the
identification of insertion or deletion segmentation caused by AS
events (Liu et al., 2017). Hybrid sequencing and map finding
(HySeMaFi) combined PacBio Iso-Seq and NGS to identify

8https://github.com/liuxiaoxian/IsoSeq_AS_de_novo

splicing and quantify the isoforms abundance (Ning et al., 2017).
AStrap adopted machine-learning model to identify AS events by
integrating more than 500 assembled features (Ji et al., 2018).

THE APPLICATION OF NANOPORE
DIRECT RNA SEQUENCING

Since full-length native RNA-Seq (nRNA-Seq) of ONT provides
multiple benefits compared to NGS, this method has been
applied for detecting viral transcriptomes (Moldován et al.,
2018a), 16S rRNA base modifications (Smith et al., 2017),
viral pathogen (Depledge et al., 2018), and identification of
artifactual splice isoforms during reverse transcription due to the
template switching (Moldován et al., 2018b). Finally, a significant
advantage of direct RNA-Seq is that it allows detection of co/post-
transcriptional base modifications in RNA since it does not
require reverse transcription and PCR amplification steps. Many
reversible chemical modifications of bases occur in mRNAs,
which are collectively referred to as the “epitranscriptome”
(Gilbert et al., 2016). These covalent reversible chemical
modifications of nucleotides regulate many aspects of gene
expression. Recent studies indicate that epitranscriptomic
modifications are key players in regulating pre-mRNA splicing,
nuclear export, mRNA stability and localization, and translation
efficiency (Gilbert et al., 2016; Xiao et al., 2016; Roundtree
et al., 2017; Slobodin et al., 2017) and also several developmental
processes in plants (Fray and Simpson, 2015; Vandivier and
Gregory, 2018). There is no simple high-throughput tool to
detect mRNA modifications and their dynamics in plants.
A widely used method for transcriptome-wide analysis of RNA
modifications is challenging as it requires specific antibodies for
each modification. These antibodies are then used to precipitate
RNA with modifications, which is then subjected to high-
throughput sequencing (Figure 2). This method has been used
to identify transcriptome-wide m6A localization and abundance
in animals (Dominissini et al., 2012; Meyer et al., 2012).
In Arabidopsis thaliana, a transcriptome-wide 6-methyladenine
(m6A) and 5-methylcytosine (m5C) profiles were reported
using the m6A- or m5C-targeted antibodies, respectively, for
RNA immunoprecipitation (RIP) followed by high-throughput
sequencing (m6A-Seq/m5C-Seq) (Luo et al., 2014; Cui et al.,
2017). This RIP-Seq approach has several limitations including
the need for specific antibody for each modification. It is also
time-consuming and laborious. Furthermore, it is difficult to
obtain a sufficient amount of immunoprecipitated RNA. More
importantly, this method does not provide the precise location
of the modified base. Recently, it has been shown that RNA
modifications can be detected using Oxford Nanopore direct
RNA-Seq (Garalde et al., 2018).

The library construction protocol for direct RNA-Seq was
designed for poly(A) transcripts (Garalde et al., 2018). Steps
involved in native RNA-Seq are illustrated in Figure 3. Although
single-stranded RNA is depicted in this figure, RNA-DNA hybrid
can be used for direct RNA-Seq where only the RNA strand in the
hybrid is sequenced. The use of RNA-DNA hybrids may alleviate
some issues associated with RNA secondary structures and
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FIGURE 2 | An illustration of epitranscriptome analysis using antibodies to identify RNAs with base modifications. Poly(A)+ mRNA is used for RNA
immunoprecipitation with antibodies specific to a base modification (e.g., m6A or m5C). The IP’ed RNA is then used to generate a cDNA library for high-throughput
sequencing. The reads are then aligned to the reference genome.
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FIGURE 3 | Schematic illustration of direct RNA sequencing using the Oxford Nanopore Technology. Poly(A)+ mRNA from total RNA is isolated, then a poly(T)
adaptor and a sequencing adaptor with a motor enzyme are added to the 3′ end of poly(A)+ mRNA. It is then subject to sequencing on a membrane with thousands
of nanopore channels, each of which is coupled to ammeters that measure current passing through the pore. The motor enzyme interacts with a nanopore on an
electrically resistant synthetic membrane and the RNA strand is fed through the nanopore. A voltage across the membrane is applied and as the RNA moves
through the nanopore nucleotide bases cause a characteristic change in current through the pore that is unique to each normal and modified base. The current
output is then used in base-calling. An example of current output when RNA with (right box) or without modified RNA bases (left box) move through a pore is shown.
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improve sequence throughput and quality (Garalde et al., 2018).
In characterizing the yeast transcriptome using direct RNA-Seq,
single-stranded RNA was used (Garalde et al., 2018) whereas in
analyzing the human transcriptome, RNA–DNA hybrids were
used (Workman et al., 2018). Transcripts without poly(A) tail
can also be sequenced by enzymatically adding a 3′ poly (A)
tail. One of the limitations for direct RNA-Seq is about the
truncated reads. Studies in both pseudorabies virus (Moldován
et al., 2018b) and Saccharomyces cerevisiae (Jenjaroenpun et al.,
2018) revealed truncated reads, especially missing nucleotides at
the 5′ end of the transcripts. It was speculated that it might be
due to the premature release of the sequencing transcripts by
the motor protein (Moldován et al., 2018b). However, longer
transcripts over 5 kb could be generated using direct RNA-Seq
(Jenjaroenpun et al., 2018). Thus, the motor protein might not
be the major reason for the truncated reads. Another limitation
is that at present bioinformatics tools for identification of RNA
modification are rare. Tombo is the only reported tool to identify
modified nucleotides from ONT (Stoiber et al., 2016). Also, base-
calling algorithms for most RNA modifications are yet to be
developed. Recently, soybean (Glycine max) seed transcriptome
has been sequenced using MinION sequencing. However, this
study adopted cDNA sequencing method, which could not be
used for characterization of RNA modifications (Fleming et al.,
2018). So far, only two direct RNA-sequencing studies – one with
yeast poly(A)+ RNA (Garalde et al., 2018) and one with human
poly(A)+ RNA(Workman et al., 2018) – have been performed
with eukaryotic mRNAs. Interestingly, native sequencing of
human poly(A)+ RNA uncovered a large number of novel
isoforms (over 65% of all detected isoforms are novel) (Workman
et al., 2018). The authors of the human transcriptome study were
able to assess poly(A)+ length, allele-specific expression, base
modifications (N6-methyladenine and inosine) in mRNA from
direct RNA-Seq data (Workman et al., 2018).

FUTURE DIRECTIONS

From the Iso-Seq library construction step, it becomes apparent
that the RNA modification information will be removed. Thus,
common Iso-Seq libraries cannot be used for detecting RNA
modification. Beside direct RNA-Seq, the PacBio reads from
genome sequencing without any PCR amplification step can be
used to detect DNA methylation marks, such as m6A, m5C,
5-hydroxymethylcytosine (Flusberg et al., 2010; Fang et al.,
2012), and 4-methylcytosine (4mC) (Ye et al., 2016), respectively.
Bisulfite sequencing (BS-Seq) using NGS can also detect m5C in a
genome-wide manner (Krueger et al., 2012). However, long reads
without PCR amplification provide new opportunities to detect
additional modifications, which present distinct kinetic profiles
and cannot be detected using NGS technologies. In A. thaliana,
global profiling of m6A residues has been investigated using this
method at single-nucleotide resolution (Liang et al., 2018). ONT
sequencing can detect native genomic methylation, which has
been reported in Escherichia coli (Rand et al., 2017) and humans
(Simpson et al., 2017). It can be expected that both PacBio and
ONT with enough coverage can replace present methylation

detecting methods, such as bisulfite-treated DNA following NGS
for m5C identification (Frommer et al., 1992). By using a reverse
transcriptase, instead of DNA polymerase, in ZMWs, cDNA
synthesis has been observed in real time (Saletore et al., 2012).
Furthermore, the presence of a modified (e.g., m6A) in RNA
has been shown to alter the kinetics of nucleotide incorporation
at the modified site. Based on this, it was suggested that by
monitoring cDNA synthesis in real time in ZMWs modifications
in RNA can be identified using the altered kinetic signature
(Saletore et al., 2012).

Previous studies have shown that it is difficult to reconstruct
splice isoforms and quantify differential expression of isoforms
using short reads obtained with second-generation sequencing
(Steijger et al., 2013; Kratz and Carninci, 2014). In comparison
with Illumina, the read length is the great advantage in Iso-
Seq cDNA transcript sequencing and Oxford Nanopore direct
RNA-Seq, which can capture entire transcripts (Wang et al.,
2016). Comparison of the gene expression between Illumina
datasets and MinION revealed high correlation coefficient (Seki
et al., 2018), which suggests that MinION is a useful platform
to calculate expression level of transcripts by read count,
or relative abundance of an RNA as transcripts per million
transcripts (TPM) (Marinov, 2017). Indeed, single-molecule
long-read sequencing in maize revealed tissue-specific isoforms
(Wang et al., 2016). These new technologies provide great
strengths and new avenues to explore complex transcriptomes.
A combination of different techniques can offer solutions to
overcome weaknesses of NGS and PacBio/ONT (Rhoads and Au,
2015). At present, IDP (Au et al., 2013) was developed to use long
reads for identification of complex transcript structure and next-
generation short reads for quantification. This hybrid method can
solve the limitation for both technologies. A recent study showed
a high correlation between ONT and Illumina on quantifying
gene expression (Byrne et al., 2017). With improvements in
sequencers (from MinION, GridION to PromethION), Oxford
Nanopore direct RNA-Seq with sufficient throughput and
accuracy can possibly be used to perform quantitative analyses
of full-length isoforms on a whole transcriptome level.
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