3,743 research outputs found

    Unextendible Maximally Entangled Bases in Cpd⊗Cqd\mathbb{C}^{pd}\otimes \mathbb{C}^{qd}

    Full text link
    The construction of unextendible maximally entangled bases is tightly related to quantum information processing like local state discrimination. We put forward two constructions of UMEBs in Cpd⊗Cqd\mathbb {C}^{pd}\otimes \mathbb {C}^{qd}(p≤qp\leq q) based on the constructions of UMEBs in Cd⊗Cd\mathbb {C}^{d}\otimes \mathbb {C}^{d} and in Cp⊗Cq\mathbb {C}^{p}\otimes \mathbb {C}^{q}, which generalizes the results in [Phys. Rev. A. 94, 052302 (2016)] by two approaches. Two different 48-member UMEBs in C6⊗C9\mathbb {C}^{6}\otimes \mathbb {C}^{9} have been constructed in detail

    A Gradient Multiobjective Particle Swarm Optimization

    Get PDF
    An adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm, based on a multiobjective gradient (MOG) method, is developed to improve the computation performance. In this AGMOPSO algorithm, the MOG method is devised to update the archive to improve the convergence speed and the local exploitation in the evolutionary process. Attributed to the MOG method, this AGMOPSO algorithm not only has faster convergence speed and higher accuracy but also its solutions have better diversity. Additionally, the convergence is discussed to confirm the prerequisite of any successful application of AGMOPSO. Finally, with regard to the computation performance, the proposed AGMOPSO algorithm is compared with some other multiobjective particle swarm optimization (MOPSO) algorithms and two state-of-the-art multiobjective algorithms. The results demonstrate that the proposed AGMOPSO algorithm can find better spread of solutions and have faster convergence to the true Pareto-optimal front

    Intelligent Modeling Approach to Predict Effluent Quality of Wastewater Treatment Process

    Get PDF
    Monitoring of effluent quality remains a challenge to the wastewater treatment process (WWTP). In order to provide a reliable tool for the online monitoring of effluent quality, an intelligent modeling approach, which consists of online sensors and an effluent quality predicting plant, is developed to predict effluent quality in this chapter. The intelligent modeling approach, based on a self-organizing fuzzy neural network (SOFNN), is able to enhance the modeling performance by organizing the structure and adjusting the parameters simultaneously. The experimental studies of intelligent modeling approach have been performed on several systems to verify the effectiveness. The comparison with other existing methods has been made and demonstrated that the intelligent modeling approach is of better performance

    Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV)

    Full text link
    Ranaviruses are emerging pathogens that have led to global impact and public concern. As a rarely endangered species and the largest amphibian in the world, the Chinese giant salamander, Andrias davidianus, has recently undergone outbreaks of epidemic diseases with high mortality. In this study, we isolated and identified a novel ranavirus from the Chinese giant salamanders that exhibited systemic hemorrhage and swelling syndrome with high death rate in China during May 2011 to August 2012. The isolate, designated Andrias davidianus ranavirus (ADRV), not only could induce cytopathic effects in different fish cell lines and yield high viral titers, but also caused severely hemorrhagic lesions and resulted in 100% mortality in experimental infections of salamanders. The complete genome of ADRV was sequenced and compared with other sequenced amphibian ranaviruses. Gene content and phylogenetic analyses revealed that ADRV should belong to an amphibian subgroup in genus Ranavirus, and is more closely related to frog ranaviruses than to other salamander ranaviruses. Homologous gene comparisons show that ADRV contains 99%, 97%, 94%, 93% and 85% homologues in RGV, FV3, CMTV, TFV and ATV genomes respectively. In addition, several variable major genes, such as duplicate US22 family-like genes, viral eukaryotic translation initiation factor 2 alpha gene and novel 75L gene with both motifs of nuclear localization signal (NLS) and nuclear export signal (NES), were predicted to contribute to pathogen virulence and host susceptibility. These findings confirm the etiologic role of ADRV in epidemic diseases of Chinese giant salamanders, and broaden our understanding of evolutionary emergence of ranaviruses

    Isolation and Characterization of Polymorphic Microsatellite Markers for Two Subterranean Termites

    Get PDF
    We isolated 15 and 18 highly polymorphic genomic microsatellite markers from two subterranean termites, Reticulitermes aculabialis and R. labralis, respectively. A total of 53 alleles were detected in 15 microsatellite loci of R. aculabialis, and the alleles were 3.533±1.302 (mean±SD), while the corresponding data of R. labralis were 115 detected alleles in 18 microsatellite loci with 6.389±1.754 alleles. The observed and expected heterozygosity was 0.496±0.236 and 0.564±0.125 in R. aculabialis, and 0.368±0.263 and 0.702±0.115 in R. labralis, respectively. Seven loci were highly polymorphic (PIC>0.5) in R. aculabialis, and 15 loci were highly polymorphic (PIC>0.5) in R. labralis. All loci showed Hardy–Weinberg equilibrium. These polymorphic markers provide useful tools for population genetic and breeding system studies of subterranean termites

    Multi-probe Enabled Over-the-air Calibration of Millimeter-wave Antenna Array: Concept and Experimental Validation

    Get PDF
    Millimeter wave (mmWave) antenna array systems with high-gain beam-steerablecapability play a key role in fulfilling the high data-rate demands of the fifth generation (5G)and beyond wireless technologies. Rigorous array calibration is essential to ensure theirradiation performance fulfills the standard requirements before massive rollout. These testswill exclusively transition to over-the-air (OTA) testing approaches with antennas included,due to the lack of antenna connectors and their compact and highly integrated designsin emerging mmWave radio systems. This has posed huge challenges on measurementand calibration of mmWave antenna arrays, due to the more demanding requirement onsystem complexity, implementation cost, measurement time, and measurement uncertainty.In this work, a multi-probe framework for phased array calibration is introduced, aimingto achieve objectives including measurement range reduction, measurement efficiencyimprovement and measurement accuracy enhancement compared with the conventionalsingle-probe method. The basic principle, capabilities, limitations, and design of multi-probe configuration are detailed for each measurement objective. Moreover, extensivemeasurement results were presented to validate the effectiveness and robustness of theproposed multi-probe based array calibration algorithms for each measu

    A novel measurement of Bs0B^0_s and Ds−D^-_s lifetimes using semileptonic decays at LHCb

    Get PDF
    I report new, world-leading LHCb results on heavy meson lifetimes. We use a novel approach that suppresses the shortcomings typically associated with reconstruction of semileptonic decays, allowing for precise measurements of lifetimes and other properties in collider experiments. We achieve a 15% and a 2×2\times improvement over current best determinations of the flavor-specific Bs0B^0_s lifetime and Ds−D^-_s lifetime, respectively.Comment: 12 pages, 6 figures. Talk presented at the APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab. C17073

    Dynamic comparison between Daan real-time PCR and Cobas TaqMan for quantification of HBV DNA levels in patients with CHB

    Get PDF
    BACKGROUND: Hepatitis B virus (HBV) DNA levels are crucial for managing chronic hepatitis B (CHB). It was unclear whether Daan real-time polymerase chain reaction test (Daan test) or COBAS TaqMan HBV DNA Test (Cobas TaqMan) was superior in measuring different HBV DNA levels in clinical specimens. METHODS: We enrolled 67 treatment-naïve, HBV surface antigen-positive CHB patients (high baseline viral levels) who received either lamivudine/adefovir or entecavir. Serum samples were tested at baseline and treatment week 24 using the Daan test and Cobas TaqMan. RESULTS: In the 67-baseline samples, the HBV DNA levels with the Cobas TaqMan (7.90 ± 0.73 log(10) IU/mL) were significantly greater than those of the Daan test (7.11 ± 0.44 log(10) IU/mL; P < 0.001). Of the 67 24-week samples (low viral levels), the Cobas TaqMan detected 59 (88.1%; 8 undetected); the Daan test detected 33 (49.3%; 34 undetected; P < 0.001). The Cobas TaqMan detected HBV DNA in 26 of 34 samples undetectable by the Daan test (range, 1.4–3.7 log(10) IU/mL) or 38% of samples (26/67). The reductions in viral load after 24 weeks of oral antiviral treatment in the 33 samples that were positive for both the Daan test and the Cobas TaqMan test were significantly different (3.59 ± 1.11 log(10) IU/mL versus 4.87 ± 1.58 log(10) IU/mL, respectively; P = 0.001). Spearman correlation analysis showed positive correlation between results from two tests (r(p) = 0.602,P<0.001). The HBV genotypes and the anti-viral treatment did not affect the measurements of the HBV DNA by the Daan assay and the Cobas Taqman assay. CONCLUSION: The Cobas Taqman was more sensitive at low viral loads than the Daan test and the change from complete to partial virological response could affect clinical decisions. The Cobas Taqman may be more appropriate for detection of HBV DNA levels
    • …
    corecore