29 research outputs found

    Optimal Selection of Power Converter in DFIG Wind Turbine With Enhanced System-Level Reliability

    Get PDF

    Mission profile resolution effects on lifetime estimation of doubly-fed induction generator power converter

    Get PDF

    Internal Model Current Control of Brushless Doubly Fed Induction Machines

    Get PDF
    In the wind energy generation system, the brushless doubly-fed induction machine (BDFIM) has shown significant application potential, since it eliminates the electric brush and slip ring. However, the complicated rotor structure increases the control difficulty, especially resulting in complicated coupled terms in the current sub-system, which deteriorates the dynamic performance and reduces the system robustness. In order to address the problems caused by complex coupled terms, an internal model current control strategy is presented for the BDFIM, and an active damping term is designed for suppressing the disturbance caused by the total resistance. The proposed method simplifies the controller parameters design, and it achieves the fast-dynamic response and the good tracking performance, as well as good robustness. On the other hand, the feedforward term composed by the grid voltage is added to the internal model controller in order to suppress the disturbance when the symmetrical grid voltage sag happens. Finally, the simulation and experimental results verify the feasibility and effectiveness of the proposed method

    A modulated model predictive control scheme for the brushless doubly-fed induction machine

    Get PDF
    This paper proposes a modulated model predictive control (MMPC) algorithm for a brushless double-fed induction machine. The Brushless Doubly-Fed Induction Machine has some important advantages over alternative solutions for brushless machine applications. The proposed modulation technique achieves a fixed switching frequency, which gives good system performance. The paper examines the design and implementation of the modulation technique and simulation results verify the operation of the proposed modulation technique

    Numerical simulation study on pore clogging of pervious concrete pavement based on different aggregate gradation

    Get PDF
    Pervious concrete (PC) pavements can effectively reduce surface runoff, but it will be clogged with time and its service life will be affected. In this study, based on three groups of PC specimens with different aggregate gradations optimized by previous experiments, the pavement-clogging simulation test is carried out using the two-way coupling of the particle flow code with computational fluid dynamics (PFC-CFD). The results show that when the gradation of aggregates in the pervious pavement is different, the volume fraction of clogging material in the pavement and the time when the volume fraction of the clogging material reaches the maximum are also different. It is related to the zigzag degree and size of the pore in the pervious pavement. The smaller the particle size of coarse aggregate in the pervious pavement, the easier it is to be clogged, and the discontinuous graded coarse aggregate has a good shielding effect on the clogging material. Different clogging material gradations have different effects on the clogging of pervious pavements. According to the aforementioned research results, researchers can select different mix ratios of anti-clogging PC according to different areas of use. The law obtained from the experiment can provide a reference for further study of the double-layer pervious pavement structure design

    A Modulated Model Predictive Control Scheme for the Brushless Doubly Fed Induction Machine

    Get PDF
    © 2013 IEEE. Brushless doubly fed induction machines (BDFIMs) feature some important advantages, such as high reliability and low maintenance cost, over alternative solutions for brushless machine applications. This paper proposes a modulated model predictive control (MPC) algorithm for BDFIMs, which achieves a fixed switching frequency and superior system performance. An improvement of power quality is shown in this paper when compared to the conventional finite-control set-MPC. This paper examines the design and implementation of the modulation technique as well as presenting the simulation and experimental results to verify the technique's operation

    Effects of moisture content on electrostatic sensing based mass flow measurement of pneumatically conveyed particles

    Get PDF
    Mass flow rate measurement of pneumatically conveyed particles is desirable for the optimal control of many industrial processes. The unpredicted variation of moisture content in particles affects the accuracy of mass flow measurement of particles in enclosed pipelines using electrostatic electrodes. In this study, the characteristics of measured electrostatic signals from particle flow under different flow conditions are analysed to study the effect of moisture content on the mass flow rate measurement. The measurement principle of ring-shaped electrostatic electrodes, the effects of moisture content on electrification of solid particles, and the experimental setup used in the study are presented. Two types of electrostatic electrodes with different axial widths and structure are adopted to measure the electrostatic signals of nonporous glass beads and porous activated carbon powder on the vertical pipeline of a 74 mm bore gas–solid two-phase flow test rig under various moisture content, mass flow rate and conveying velocity conditions. The experimental results indicate that the amplitude and frequency characteristics of the electrostatic signals change with the moisture content. The deviation of mass flow measurement that caused by the variation of moisture content is analysed, and a recalibration process is demonstrated to be effective for the improvement of measurement accuracy

    Design of power converter in DFIG wind turbine with enhanced system-level reliability

    No full text
    corecore