3 research outputs found

    Protocol for Reading Out Majorana Vortex Qubits and Testing Non-Abelian Statistics

    No full text
    The successful testing of non-Abelian statistics not only serves as a milestone in fundamental physics but also provides a quantum-gate operation in topological quantum computation. An accurate and efficient readout scheme of a topological qubit is an essential step toward the experimental confirmation of non-Abelian statistics. In the current work, we propose a protocol to read out the quantum state of a Majorana vortex qubit on a topological superconductor island. The protocol consists of four Majorana zero modes trapped in spatially well-separated vortex cores on the two-dimensional surface of a Coulomb blockaded topological superconductor. Our proposed measurement is implemented by a pair of weakly coupled Majorana modes separately in touch with two normal-metal leads and the readout is realized by observing the conductance-peak location in terms of the gate voltage. Using this protocol, we can further test the non-Abelian statistics of Majorana zero modes in the two-dimensional platform. A successful readout of a Majorana qubit is a crucial step toward the future application of topological quantum computation. In addition, this Coulomb-blockaded setup can distinguish Majorana zero modes from Caroli-de Gennes-Matricon modes in vortex cores.ChemE/Delft Ingenious DesignQuTec

    Synthesis of salicylaldehydes from phenols via copper-mediated duff reaction

    No full text
    A copper-mediated Duff reaction for ortho-selective formylation of phenols has been developed. In the presence of copper species, significant improvements of yield and ortho-selectivity of the Duff formylation were achieved, which provides an easy access to salicylaldehydes from phenols

    Regional homogeneity of resting-state brain abnormalities in bipolar and unipolar depression

    No full text
    Objective: Bipolar disorder patients experiencing a depressive episode (BD-dep) without an observed history of mania are often misdiagnosed and are consequently treated as having unipolar depression CUD), leading to inadequate treatment and poor outcomes. An essential solution to this problem is to identify objective biological markers that distinguish BD-dep and UD patients at an early stage. However, studies directly comparing the brain dysfunctions associated with BD-dep and UD are rare. More importantly, the specificity of the differences in brain activity between these mental disorders has not been examined. With whole-brain regional homogeneity analysis and region-of-interest (ROI) based receiver operating characteristic (ROC) analysis, we aimed to compare the resting-state brain activity of BD-dep and UD patients. Furthermore, we examined the specific differences and whether these differences were attributed to the brain abnormality caused by BD-dep, UD, or both. Methods: Twenty-one bipolar and 21 unipolar depressed patients, as well as 26 healthy subjects matched for gender, age, and educational levels, participated in the study. We compared the differences in the regional homogeneity (ReHo) of the BD-dep and UD groups and further identified their pathophysiological abnormality. In the brain regions showing a difference between the BD-dep and UD groups, we further conducted receptive operation characteristic (ROC) analyses to confirm the effectiveness of the identified difference in classifying the patients. Results: We observed ReHo differences between the BD-dep and UD groups in the right ventrolateral middle frontal gyrus, right dorsal anterior insular, right ventral anterior insular, right cerebellum posterior gyrus, right posterior cingulate cortex, right parahippocampal gyrus, and left cerebellum anterior gyrus. Further ROI comparisons and ROC analysis on these ROIs showed that the right parahippocampal gyrus reflected abnormality specific to the BD-dep group, while the right middle frontal gyrus, the right dorsal anterior insular, the right cerebellum posterior gyrus, and the right posterior cingulate cortex showed abnormality specific to the UD group. Conclusions: We found brain regions showing resting state ReHo differences and examined their sensitivity and specificity, suggesting a potential neuroimaging biomarker to distinguish between BD-dep and UD patients. We further clarified the pathophysiological abnormality of these regions for each of the two patient populations. (C) 2012 Elsevier Inc. All rights reserved
    corecore