205,321 research outputs found
Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method
An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer solution [5 mmol/L p-toluensulfonic acid (p-TSA) + 20 mmol/L bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (bis¿tris) + 100 ¿mol/L sodium ethylenediaminetetraacetic (EDTA-2Na)] was used to improve the sensitivity of detection. The average spiked recoveries for the ten organic acids ranged from 82.9 to 127.9% with relative standard deviations of 1.44¿4.71%. The linear ranges of determination were from 15 to 1,000 mg/L with correlation coefficients of 0.9995¿0.9999. The metabolism of organic acids in cider, and the effect of nutrients including diammonium phosphate (DAP), thiamine, biotin, niacinamide and pantothenic acid on their metabolism, were studied using this method of analysis. We found that before cider brewing, additions of 200 mg/L DAP and 0.3 mg/L thiamine to apple juice concentrate results in a high quality cider
Calabi-Yau coalgebras
We provide a construction of minimal injective resolutions of simple
comodules of path coalgebras of quivers with relations. Dual to Calabi-Yau
condition of algebras, we introduce the Calabi-Yau condition to coalgebras.
Then we give some descriptions of Calabi-Yau coalgebras with lower global
dimensions. An appendix is included for listing some properties of cohom
functors
Dualities of artinian coalgebras with applications to noetherian complete algebras
A duality theorem of the bounded derived category of quasi-finite comodules
over an artinian coalgebra is established. Let be a noetherian complete
basic semiperfect algebra over an algebraically closed field, and be its
dual coalgebra. If is Artin-Schelter regular, then the local cohomology of
is isomorphic to a shift of twisted bimodule with
a coalgebra automorphism. This yields that the balanced dualinzing
complex of is a shift of the twisted bimodule . If
is an inner automorphism, then is Calabi-Yau
Exciton states in cylindrical nanowires
The exciton ground state and excited state energies are calculated for a
model system of an infinitely long cylindrical wire. The effective Coulomb
potential between the electron and the hole is studied as function of the wire
radius. Within the adiabatic approximation, we obtain `exact' numerical results
for the effective exciton potential and the lowest exciton energy levels which
are fitted to simple analytical expressions. Furthermore, we investigated the
influence of a magnetic field parallel to the nanowire on the effective
potential and the exciton energy.Comment: 9 pages, 9 figures. Submitted for publication to PRB. Figures must be
downloaded seperatel
On Security and Sparsity of Linear Classifiers for Adversarial Settings
Machine-learning techniques are widely used in security-related applications,
like spam and malware detection. However, in such settings, they have been
shown to be vulnerable to adversarial attacks, including the deliberate
manipulation of data at test time to evade detection. In this work, we focus on
the vulnerability of linear classifiers to evasion attacks. This can be
considered a relevant problem, as linear classifiers have been increasingly
used in embedded systems and mobile devices for their low processing time and
memory requirements. We exploit recent findings in robust optimization to
investigate the link between regularization and security of linear classifiers,
depending on the type of attack. We also analyze the relationship between the
sparsity of feature weights, which is desirable for reducing processing cost,
and the security of linear classifiers. We further propose a novel octagonal
regularizer that allows us to achieve a proper trade-off between them. Finally,
we empirically show how this regularizer can improve classifier security and
sparsity in real-world application examples including spam and malware
detection
X-Ray Flares from Postmerger Millisecond Pulsars
Recent observations support the suggestion that short-duration gamma-ray
bursts are produced by compact star mergers. The X-ray flares discovered in two
short gamma-ray bursts last much longer than the previously proposed postmerger
energy release time scales. Here we show that they can be produced by
differentially rotating, millisecond pulsars after the mergers of binary
neutron stars. The differential rotation leads to windup of interior poloidal
magnetic fields and the resulting toroidal fields are strong enough to float up
and break through the stellar surface. Magnetic reconnection--driven explosive
events then occur, leading to multiple X-ray flares minutes after the original
gamma-ray burst.Comment: 10 pages, published in Scienc
Sigma_c Dbar and Lambda_c Dbar states in a chiral quark model
The S-wave Sigma_c Dbar and Lambda_c Dbar states with isospin I=1/2 and spin
S=1/2 are dynamically investigated within the framework of a chiral constituent
quark model by solving a resonating group method (RGM) equation. The results
show that the interaction between Sigma_c and Dbar is attractive, which
consequently results in a Sigma_c Dbar bound state with the binding energy of
about 5-42 MeV, unlike the case of Lambda_c Dbar state, which has a repulsive
interaction and thus is unbound. The channel coupling effect of Sigma_c Dbar
and Lambda_c Dbar is found to be negligible due to the fact that the gap
between the Sigma_c Dbar and Lambda_c Dbar thresholds is relatively large and
the Sigma_c Dbar and Lambda_c Dbar transition interaction is weak.Comment: 7 pages,2 figures. arXiv admin note: text overlap with
arXiv:nucl-th/0606056 by other author
- …