28 research outputs found
H+-pyrophosphatases enhance low nitrogen stress tolerance in transgenic Arabidopsis and wheat by interacting with a receptor-like protein kinase
IntroductionNitrogen is a major abiotic stress that affects plant productivity. Previous studies have shown that plant H+-pyrophosphatases (H+-PPases) enhance plant resistance to low nitrogen stress. However, the molecular mechanism underlying H+-PPase-mediated regulation of plant responses to low nitrogen stress is still unknown. In this study, we aimed to investigate the regulatory mechanism of AtAVP1 in response to low nitrogen stress.Methods and ResultsAtAVP1 in Arabidopsis thaliana and EdVP1 in Elymus dahuricus belong to the H+-PPase gene family. In this study, we found that AtAVP1 overexpression was more tolerant to low nitrogen stress than was wild type (WT), whereas the avp1-1 mutant was less tolerant to low nitrogen stress than WT. Plant height, root length, aboveground fresh and dry weights, and underground fresh and dry weights of EdVP1 overexpression wheat were considerably higher than those of SHI366 under low nitrogen treatment during the seedling stage. Two consecutive years of low nitrogen tolerance experiments in the field showed that grain yield and number of grains per spike of EdVP1 overexpression wheat were increased compared to those in SHI366, which indicated that EdVP1 conferred low nitrogen stress tolerance in the field. Furthermore, we screened interaction proteins in Arabidopsis; subcellular localization analysis demonstrated that AtAVP1 and Arabidopsis thaliana receptor-like protein kinase (AtRLK) were located on the plasma membrane. Yeast two-hybrid and luciferase complementary imaging assays showed that the AtRLK interacted with AtAVP1. Under low nitrogen stress, the Arabidopsis mutants rlk and avp1-1 had the same phenotypes.DiscussionThese results indicate that AtAVP1 regulates low nitrogen stress responses by interacting with AtRLK, which provides a novel insight into the regulatory pathway related to H+-pyrophosphatase function in plants
Germplasm Authentication of Mantis Shrimps (<i>Oratosquilla oratoria</i>) in China Sea by SNP and AS-PCR Method
1471-1473In the study, germplasm authentication of mantis shrimp in China sea was analyzed by SNP and AS-PCR method. Twenty-six stably single nucleotide polymorphisms (SNPs) between Bohai sea and South China sea were revealed, and population-specific primer pairs (BH065/BH326, SC065/SC326) were established based on SNPs. And topological structure analysis separated the mantis shrimps into two distinct lineages with 100% statistical support, which reveals significant divergence has happened in China sea though weak differentiation in morphology. These results showed SNPs and AS-PCR might be the useful tools for germplasm authentication of mantis shrimp
QTL mapping for flag leaf-related traits and genetic effect of QFLW-6A on flag leaf width using two related introgression line populations in wheat.
The flag leaf is the main organ of photosynthesis during grain-filling period of wheat, and flag leaf-related traits affect plant morphology and yield potential. In this study, two BC3F6 introgression line (IL) populations derived from the common recipient parent Lumai 14 with Jing 411 and Shaanhan 8675, respectively, were used to map quantitative trait loci (QTL) for flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA) and chlorophyll content (CC) at flowering stage and 15 and 20 days after anthesis (DAA) in 2016-2017 (E1) and 2017-2018 (E2) two environments. A total of 14 and 15 QTLs for flag leaf-related traits were detected in Lumai 14 / Jing 411 and Lumai 14 / Shaanhan 8675 populations, respectively. Among them, Both QFLW-6A and QFLA-6A were detected in Lumai 14 / Jing 411 population under E2 and in Lumai 14 / Shaanhan 8675 population under E1 and E2 environments, respectively. QCCS2-3A from Lumai 14 / Jing 411 population and QCCS3-1A, QFLL-4A and QFLL-6A from Lumai 14 / Shaanhan 8675 population were repeatedly identified under two tested environments. Moreover, eight QTL clusters controlling flag leaf-related traits were identified, which provided a genetic basis for significant correlations in phenotype among these traits. On the other hand, positive alleles of QFLW-6A for FLW detected in two populations were derived from their donors. Eighteen lines and 44 lines carried this QTL were found in Lumai 14 / Jing 411 and Lumai 14 / Shaanhan 8675 populations, respectively. The means of FLW in these lines were wider than that of the recipient parent, Lumai 14, in two environments, suggesting that QFLW-6A played an important role for increasing FLW. The IL 124 in Lumai 14 / Jing 411 population and the IL 59 and IL 127 in Lumai 14 / Shaanhan 8675 population had five, five and four donor chromosomal segments which carried no other QTL controlling FLW than QFLW-6A, respectively. And the FLWs of these lines were significantly greater than that of Lumai 14 under two environments. So these lines and their donor parent can be regarded as potential near-isogenic lines. Further, a synteny analysis found QFLW-6A was near the 574,283,851-574,283,613 bp fragment on chromosome 6A and 10 genes were in the range of 500 kb upstream and downstream of the fragment. These results provide the basis for identification of candidate gene and map-based cloning and functional verification of the QTL
Comparative transcriptome analysis of Eriocheir japonica sinensis response to environmental salinity.
Chinese mitten crabs (Eriocheir japonica sinensis) are catadromous, spending most of their lives in fresh water, but moving to a mixed salt-fresh water environment for reproduction. The characteristics of this life history might imply a rapidly evolutionary transition model for adaptation to marine from freshwater habitats. In this study, transcriptome-wide identification and differential expression on Chinese mitten crab groups were analysed. Results showed: clean reads that were obtained totalled 93,833,096 (47,440,998 in Group EF, the reference, and 46,392,098 in Group ES, the experimental) and 14.08G (7.12G in Group EF 6.96G in Group ES); there were 11,667 unigenes (15.29%) annotated, and they were located to 230 known KEGG pathways in five major categories; in differential expression analysis, most of the top 20 up-regulated pathways were connected to the immune system, disease, and signal transduction, while most of the top 20 down-regulated pathways were related to the metabolism system; meanwhile, 8 representative osmoregulation-related genes (14-3-3 epsilon, Cu2+ transport ATPase, Na+/K+ ATPase, Ca2+ transporting ATPase, V-ATPase subunit A, Putative arsenite-translocating ATPase, and Cation transport ATPase, Na+/K+ symporter) showed up-regulation, and 1 osmoregulation-related gene (V-ATPase subunit H) showed down-regulation. V-ATPase subunit H was very sensitive to the transition of habitats. These results were consistent with the tests of qRT-PCR. The present study has provided a foundation to further understand the molecular mechanism in response to salinity changing in water
Association of yield-related traits in founder genotypes and derivatives of common wheat (Triticum aestivum L.)
Abstract Background Yield improvement is an ever-important objective of wheat breeding. Studying and understanding the phenotypes and genotypes of yield-related traits has potential for genetic improvement of crops. Results The genotypes of 215 wheat cultivars including 11 founder parents and 106 derivatives were analyzed by the 9 K wheat SNP iSelect assay. A total of 4138 polymorphic single nucleotide polymorphism (SNP) loci were detected on 21 chromosomes, of which 3792 were mapped to single chromosome locations. All genotypes were phenotyped for six yield-related traits including plant height (PH), spike length (SL), spikelet number per spike (SNPS), kernel number per spike (KNPS), kernel weight per spike (KWPS), and thousand kernel weight (TKW) in six irrigated environments. Genome-wide association analysis detected 117 significant associations of 76 SNPs on 15 chromosomes with phenotypic explanation rates (R 2 ) ranging from 2.03 to 12.76%. In comparing allelic variation between founder parents and their derivatives (106) and other cultivars (98) using the 76 associated SNPs, we found that the region 116.0–133.2 cM on chromosome 5A in founder parents and derivatives carried alleles positively influencing kernel weight per spike (KWPS), rarely found in other cultivars. Conclusion The identified favorable alleles could mark important chromosome regions in derivatives that were inherited from founder parents. Our results unravel the genetic of yield in founder genotypes, and provide tools for marker-assisted selection for yield improvement
A Combined Association Mapping and Linkage Analysis of Kernel Number Per Spike in Common Wheat (Triticum aestivum L.)
Kernel number per spike (KNPS) in wheat is a key factor that limits yield improvement. In this study, we genotyped a set of 264 cultivars, and a RIL population derived from the cross Yangmai 13/C615 using the 90 K wheat iSelect SNP array. We detected 62 significantly associated signals for KNPS at 47 single nucleotide polymorphism (SNP) loci through genome-wide association analysis of data obtained from multiple environments. These loci were on 19 chromosomes, and the phenotypic variation attributable to each one ranged from 1.53 to 39.52%. Twelve (25.53%) of the loci were also significantly associated with KNPS in the RIL population grown in multiple environments. For example, BS00022896_51-2ATT, BobWhite_c10539_201-2DAA, Excalibur_c73633_120-3BGG, and Kukri_c35508_426-7DTT were significantly associated with KNPS in all environments. Our findings demonstrate the effective integration of association mapping and linkage analysis for KNPS, and underpin KNPS as a target trait for marker-assisted selection and genetic fine mapping
Mitochondrial genomes of Meghimatium bilineatum and Succinea arundinetorum provide insight into the gene order rearrangement within Stylommatophora (Gastropoda, Panpulmonata)
In this study, we report the whole mitochondrial genomes of two species, Meghimatium bilineatum and Succinea arundinetorum, which belong to Stylommatophora, one of the most abundant orders of Gastropoda. The total sizes of M. bilineatum and S. arundinetorum mitogenomes are 14,352 bp and 15,282 bp, with surprisingly biased proportions of A+T contents that reach to 72.1% and 76.78%, respectively. The protein coding genes (PCGs) in two mitogenomes show negative AT skew values and evolved primarily under purifying selection. Compared with the ancestor of stylommatophora, the mitochondrial genes of M. bilineatum exhibited multiple rearrangement events while the mitochondrial genes of S. arundinetorum showed only minor differences. Moreover, the order of PCGs were conserved while the tRNA genes showed high frequency of rearrangement among the stylommatophoran species, suggesting that the latter could be one of the major driving forces of mitogenomic evolution in terrestrial molluska species. Our research lays a theoretical foundation for investigating the evolution and divergence of mitochondrial genes and provides valuable resources for studying evolutionary genetics in stylommatophoran species