18,047 research outputs found

    Fabrication of a Micro-Needle Sensor Based on Copper Microspheres and Polyaniline Film for Nitrate Determination in Coastal River Waters

    Get PDF
    In this work, a new micro-needle sensor based on copper microspheres (CuMSs) and polyaniline (PANI) film was fabricated through electrodeposition method and used for the voltammetric determination of nitrate (NO3-) in coastal river samples. The PANI film functions as the conductive polymer and adhesion agent to immobilize the CuMSs which has good electrocatalytic property for the reduction of NO3-. The CuMSs could be more easily deposited on the micro-needle electrode (MNE) surface with PANI film as adhesion agent. The physical and electrochemical properties of the as-prepared micro-needle electrode were characterized by different techniques. CuMSs with diameter of about 0.5 to 1 mu m were decorated on the PANI film modified micro-needle electrode. The unique structure of micro-needle electrode and excellent properties of CuMSs and PANI film make the micro-needle sensor possesses the advantages of larger specific surface and high electrocatalytic property towards the reduction of NO3-. The micro-needle electrode based on CuMSs and PANI film shows a linear response to NO3- in the concentrations ranging from 0.02 to 6 mM (R-2 = 0.995) with the detection limit of 8 mu M. More importantly, the determination of NO3- in coastal river water samples was achieved with the micro-needle electrode with satisfactory results. (C) The Author(s) 2019. Published by ECS

    NODDI and Tensor-Based Microstructural Indices as Predictors of Functional Connectivity

    Get PDF
    In Diffusion Weighted MR Imaging (DWI), the signal is affected by the biophysical properties of neuronal cells and their relative placement, as well as extra-cellular tissue compartments. Typically, microstructural indices, such as fractional anisotropy (FA) and mean diffusivity (MD), are based on a tensor model that cannot disentangle the influence of these parameters. Recently, Neurite Orientation Dispersion and Density Imaging (NODDI) has exploited multi-shell acquisition protocols to model the diffusion signal as the contribution of three tissue compartments. NODDI microstructural indices, such as intra-cellular volume fraction (ICVF) and orientation dispersion index (ODI) are directly related to neuronal density and orientation dispersion, respectively. One way of examining the neurophysiological role of these microstructural indices across neuronal fibres is to look into how they relate to brain function. Here we exploit a statistical framework based on sparse Canonical Correlation Analysis (sCCA) and randomised Lasso to identify structural connections that are highly correlated with resting-state functional connectivity measured with simultaneous EEG-fMRI. Our results reveal distinct structural fingerprints for each microstructural index that also reflect their inter-relationships

    Tunable and processable shape memory composites based on degradable polymers

    Get PDF
    The authors acknowledge the funding provided by NSFC-DG-RTD Joint Scheme (Project No. 51361130034) and the RAPIDOS project under the European Union's 7th Framework Programme (Project No.604517)

    Interface limited hole extraction from methylammonium lead iodide films

    Get PDF
    Small solar cells based on metal halide perovskites have shown a tremendous increase in efficiency in recent years. These huge strides in device performance make it important to understand processes such as accumulation and extraction of charge carriers to better address the scalability and stability challenges which have not been solved yet. In most studies to date it is unclear whether the limiting factor of charge extraction is charge transport in the bulk of the perovskite or transfer across the interface with the charge extracting layer, owing largely to the inaccessibility of buried interfaces. Separating bulk and interfacial effects on charge extraction can help the search for new charge extracting materials, improve understanding of charge transport in active layer materials and help optimise device performance; not only in the laboratory setting but also for commercial production. Here we present a method to unambiguously distinguish between bulk and interface effects on charge extraction dynamics which is based on time-resolved photoluminescence with different excitation density profiles. We use this method to study charge extraction from solution-deposited CH3NH3PbI3 films to NiO and PEDOT:PSS layers. We find that NiO shows faster hole extraction than PEDOT:PSS from the 300 nm thick perovskite film on the time scale of 300 ps which is independent of charge carrier density in the region of 1016–1017 cm−3. The interface with NiO is found to only slightly limit charge extraction rate at charge densities exceeding 1016 cm−3 as the extraction rate is fast and does not decrease with time. This is in contrast to PEDOT:PSS where we find the charge extraction rate to be slower, decreasing with time and dependent on charge density in the region 1016–1017 cm−3 which we interpret as charge accumulation at the interface. Hence we find that charge extraction is severely limited by the interface with PEDOT:PSS. These findings are confirmed by transient absorption spectroscopy. A hole diffusion coefficient of D = (2.2 ± 0.5) cm2 s−1 was determined in the perovskite film that is independent of charge density. This indicates a band-like hole transport regime, not observed for solution processed films before. Our findings stress the importance of interface optimization in devices based on perovskite active layers as there is still room for improvement of the hole extraction rate even in the case of the superior NiO layer

    Enhanced exciton harvesting in a planar heterojunction organic photovoltaic device by solvent vapor annealing

    Get PDF
    The singlet exciton diffusion length was measured in a small molecule electron donor material DR3TBDTT using fluorescence quenching at a planar interface with a cross-linked fullerene derivative. The one-dimensional exciton diffusion length was increased from ~16 to ~24 nm by annealing the film in carbon disulfide solvent vapor. Planar heterojunction solar cells were fabricated using bilayers of these materials and it was found that solvent vapor annealing increased the short circuit current density by 46%. This can be explained by improved exciton harvesting in the annealed bilayer

    Superconducting receiver coils for sodium magnetic resonance imaging

    Get PDF
    Presents the results from sodium magnetic resonance imaging (MRI) experiments using high-temperature superconducting (HTS) receiver coils. Sodium imaging has been shown to have great potential for the assessment of cell integrity but suffers from substantially lower signal-to-noise ratio (SNR) than that of hydrogen imaging. The use of an HTS receiver coil was found to significantly increase the SNR relative to an equivalent copper receiver coil at room temperature. The SNR gains afforded by HTS coils can also be used to decrease the imaging time.published_or_final_versio
    • …
    corecore