53 research outputs found

    Precision Enhancement in Spatial Measurement by Introducing Squeezed Light into Weak Value Amplification

    Full text link
    The precision enhancement is demonstrated in an optical spatial measurement based on weak value amplification (WVA) system and split-like detection, by injecting a TEM10 squeezed vacuum beam. It is the first time combining the WVA technique and squeezed beam injection to experimentally realize high-precision optical spatial measurement beyond the standard quantum limit. As a result, the precision enhancement of 1.3 times can be achieved at 500kHz by adding a squeezed beam in the vacuum input port of the Mach-Zehnder interferometer. The minimum measurable displacement is reduced from 1.08pm to 0.85pm and the corresponding minimum measurable tilt is reduced from 0.86prad to 0.67prad. Moreover, the spatial measurement at low-frequency band is also implemented and the SNR is improved 2dB at 4kHz. Our work provides an effective method to accomplish higher precision in optical spatial measurement, which has potential applications in gravitational wave interferometer calibration, super-resolution quantum imaging, etc.Comment: 4 pages, 5 figures

    The 2011 Survey on Hypertensive Disorders of Pregnancy (HDP) in China:Prevalence, Risk Factors, Complications, Pregnancy and Perinatal Outcomes

    Get PDF
    Hypertensive disorders of pregnancy (HDP) are a group of medical complications in pregnancy and also a risk factor for severe pregnancy outcomes, but it lacks a large-scale epidemiological investigation in recent years. This survey represents a multicenter cross-sectional retrospective study to estimate the prevalence and analyze the risk factors for HDP among the pregnant women who had referred for delivery between January 1st 2011 and December 31st 2011 in China Mainland. A total of 112,386 pregnant women were investigated from 38 secondary and tertiary specialized or general hospitals randomly selected across the country, of which 5,869 had HDP, accounting for 5.22% of all pregnancies. There were significant differences in the prevalence of HDP between geographical regions, in which the North China showed the highest (7.44%) and Central China showed the lowest (1.23%). Of six subtypes of HDP, severe preeclampsia accounted for 39.96%, gestational hypertension for 31.40%, mild preeclampsia for 15.13%, chronic hypertension in pregnancy for 6.00%, preeclampsia superimposed on chronic hypertension for 3.68% and eclampsia for 0.89%. A number of risk factors for HDP were identified, including twin pregnancy, age of >35 years, overweight and obesity, primipara, history of hypertension as well as family history of hypertension and diabetes. The prevalence of pre-term birth, placental abruption and postpartum hemorrhage were significantly higher in women with HDP than those without HDP. The possible risk factors confirmed in this study may be useful for the development of early diagnosis and appropriate treatment of HDP

    A Gaussian-Shaped Fuzzy Inference System for Multi-Source Fuzzy Data

    No full text
    Fuzzy control theory has been extensively used in the construction of complex fuzzy inference systems. However, we argue that existing fuzzy control technologies focus mainly on the single-source fuzzy information system, disregarding the complementary nature of multi-source data. In this paper, we develop a novel Gaussian-shaped Fuzzy Inference System (GFIS) driven by multi-source fuzzy data. To this end, we first propose an interval-value normalization method to address the heterogeneity of multi-source fuzzy data. The contribution of our interval-value normalization method involves mapping heterogeneous fuzzy data to a unified distribution space by adjusting the mean and variance of data from each information source. As a result of combining the normalized descriptions from various sources for an object, we can obtain a fused representation of that object. We then derive an adaptive Gaussian-shaped membership function based on the addition law of the Gaussian distribution. GFIS uses it to dynamically granulate fusion inputs and to design inference rules. This proposed membership function has the advantage of being able to adapt to changing information sources. Finally, we integrate the normalization method and adaptive membership function to the Takagi–Sugeno (T–S) model and present a modified fuzzy inference framework. Applying our methodology to four datasets, we confirm that the data do lend support to the theory implying the improved performance and effectiveness

    To Delay Instantiation of a Smart Contract to Save Calculation Resources in IoT

    No full text
    Smart contracts are required to be instantiated in the predeployed stage, which consumes computation resources from then on. It is a big waste in the blockchain whose nodes are composed of IoT devices, as those devices often have limited resources (such as limited power supplies or a limited number of processes to run). Meanwhile, IoT devices are heterogeneous and different smart contracts are required. If those smart contracts are instantiated previously, numerous meaningless addresses are required. In this paper, we propose to delay the instantiation of a smart contract when used and terminate it when not used, which is similar to the life cycle of a variable. Then, a new kind of variable (the wrapping variable) is used to hide details of the instantiation and the address. The smart contract is instantiated in the construction function of the wrapping variable, or even it is delayed to the time when there are requests for it. The smart contract terminates when the variable is out of its scope. Then, different instantiation methods are proposed. Finally, we perform the qualitative comparison between the proposed approach and the predeployment method, and it demonstrates that the proposed methods optimize the life cycle of the smart contract and save calculation resources

    Electrical‐Triggered Multicolor Reversible Color‐Changing Ag Nanoparticles/Reduced Graphene Oxide/Polyurethane Conductive Fibers

    No full text
    Abstract Smart color‐changing fibers attract much attention owing to their importance as a component of flexible electronics. A facile and scalable method of multicolor reversible electro–thermochromic Ag nanoparticles/reduced graphene oxide/polyurethane conductive fiber (ETC AgNPs/rGO/PU conductive fiber) is fabricated, which contains the polyurethane (PU) as the inner layer, reduced graphene oxide (rGO) with Ag nanoparticles (AgNPs) as the conductive layer, and thermochromic paste as the outermost layer. It possesses excellent electrothermal and color‐changing properties and rapidly generates Joule heat at 0.5 V, which makes the fiber surface temperature reach 39.81 °C rapidly. The color switching rate is fast and changes from green to yellow within 2 s. During the process of 250 times on/off voltage, ETC AgNPs/rGO/PU conductive fibers still maintain excellent electrical and thermal properties and color change stability; even in the washing, strong acid, and strong alkali environment, they still have excellent durability. This human subjective adjustable electrical–thermal–color multi‐level induced modulation makes it possible to be applied to smart wearable fields such as visual camouflage, personal thermal management, and active information transfer

    Comparative Study of the Penetration Characteristics of Ni-Al and Pure Cu Shaped Charge Liners

    No full text
    In order to investigate the correlation between the reactivity of Ni-Al and micro-structural differences in the crater walls, penetration experiments were performed with Ni-Al and pure Cu shaped charge liners (SCLs). The experimental results showed that the average penetration depth of Cu jets is 2.3 times that of Ni-Al jets, but the crater entrance diameter of Ni-Al jets is larger by 26.6%. The microstructure of the recovered targets was characterized using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and a Vickers micro-hardness system. The Ni-Al “white” band was thicker than that of Cu because it releases a lot of heat. The micro-hardness test showed that the “white” band had a relatively high hardness, and the “white” band hardness in the tail was more significant than that in the head. However, the micro-structural evolution of the crater walls is related to the reactivity of Ni-Al, but is also related to other factors. Combined with the macro penetration results and the evolution of the micro-structure of the crater walls, the “white” band can absorb impact energy more strongly and weaken the jet breaking ability or armour protection ability.These results can provide more valuable reference for designing shaped charge warheads and protection structures

    Antiresistin Neutralizing Antibody Alleviates Doxorubicin-Induced Cardiac Injury in Mice

    No full text
    Background. Resistin is closely related to cardiovascular diseases, and this study is aimed at examining the role of resistin in doxorubicin- (DOX-) induced cardiac injury. Methods. First, 48 mice were divided into 2 groups and treated with saline or DOX, and the expression of resistin at different time points was examined (N=24). A total of 40 mice were pretreated with the antiresistin neutralizing antibody (nAb) or isotype IgG for 1 hour and further administered DOX or saline for 5 days. The mice were divided into 4 groups: saline-IgG, saline-nAb, DOX-IgG, and DOX-nAb (N=10). Cardiac injury, cardiomyocyte apoptosis, inflammatory factors, and the biomarkers of M1 and M2 macrophages in each group were analyzed. Result. DOX administration increased the expression of resistin. DOX treatment exacerbated the loss of body and heart weight and cardiac vacuolation in mice. The antiresistin nAb reversed these conditions, downregulated the expression of myocardial injury markers, and decreased apoptosis. In addition, the antiresistin nAb decreased p65 pathway activation, decreased M1 macrophage differentiation and the expression of related inflammatory factors, and increased M2 macrophage differentiation and the expression of related inflammatory factors. Conclusion. The antiresistin nAb protected against DOX-induced cardiac injury by reducing cardiac inflammation and may be a promising target to relieve DOX-related cardiac injury
    • 

    corecore