4,516 research outputs found

    Multiband superconductivity in the correlated electron filled skutterudite system Pr(1-x)Ce(x)Pt4Ge12

    Get PDF
    Studies of superconductivity in multiband correlated electronic systems has become one of the central topics in condensed matter/materials physics. In this paper, we present the results of thermodynamic measurements on the superconducting filled skutterudite system Pr1−x_{1-x}Cex_xPt4_4Ge12_{12} (0≤x≤0.2 0 \leq x \leq 0.2) to investigate how substitution of Ce at Pr sites affects superconductivity. We find that an increase in Ce concentration leads to a suppression of the superconducting transition temperature from Tc∼7.9T_{c}\sim 7.9 K for x=0x=0 to Tc∼0.6T_c\sim 0.6 K for x=0.14x=0.14. Our analysis of the specific heat data for x≤0.07x\leq 0.07 reveals that superconductivity must develop in at least two bands: the superconducting order parameter has nodes on one Fermi pocket and remains fully gapped on the other. Both the nodal and nodeless gap values decrease, with the nodal gap being suppressed more strongly, with Ce substitution. Ultimately, the higher Ce concentration samples (x>0.07x>0.07) display a nodeless gap only.Comment: 6 pages, 6 figure

    Chrome tanning process and the leather properties under microwave irradiation

    Get PDF
    Content: In leather making processes, the thermal and non-thermal effect of microwave, especially non-thermal effect, strengthen the combination between collagen and chemicals. Although tanning under microwave makes the leather have better thermal stability, the tanning process and leather properties have not been studied in detail. For illustrating the influence of microwave on chrome tanning process, pickled skin was tanned for 6h as penetration procedure and then basified for another 4h as fixation procedure. The tanning under microwave heating (MW) was experimental sample and under water bath heating was control. UVVis, ICP-OES and pH meter were used to measure the changes of tanning effluent during tanning, and Shrinkage temperature meter, DSC, TG, FT-IR, SEM, XRD and XPS were applied to determine the differences between MW and WB in aspect of leather property and structure. The results indicated microwave accelerated chrome tanning agent penetration and had better promotion effect on chromium complex hydrolysis and olation. The leather tanned with microwave assisting had special effect on improve tanning effect which led better thermal stability and resistance of leather, but the collagen structure, including triple helix structure, stayed as WB and the combination mechanism between collagen and chromium was also same with conventional. In sum, microwave had positive effect on accelerating tanning rate and resulting in better leather without any negative effect on leather structure. Therefore, microwave would be a potential for achieving clean and sustainable chrome tanning by making tanning much faster and more efficiency. Take-Away: Microwave promotes chrome tanning agent penetration and combination Microwave has positive effect on tanning effect further as the leather tanned by microwave assisting has higher thermal stability. Although microwave promotes chrome tanning process, the collagen structure and tanning mechanism remained as normal

    Inverse median problems

    Get PDF
    AbstractThe inverse p-median problem consists in changing the weights of the customers of a p-median location problem at minimum cost such that a set of p prespecified suppliers becomes the p-median. The cost is proportional to the increase or decrease of the corresponding weight. We show that the discrete version of an inverse p-median problem can be formulated as a linear program. Therefore, it is polynomially solvable for fixed p even in the case of mixed positive and negative customer weights. In the case of trees with nonnegative vertex weights, the inverse 1-median problem is solvable in a greedy-like fashion. In the plane, the inverse 1-median problem can be solved in O(nlogn) time, provided the distances are measured in l1- or l∞-norm, but this is not any more true in R3 endowed with the Manhattan metric

    Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution

    Get PDF
    BACKGROUND: The pulse oximeter, a medical device capable of measuring blood oxygen saturation (SpO2), has been shown to be a valuable device for monitoring patients in critical conditions. In order to incorporate the technique into a wearable device which can be used in ambulatory settings, the influence of motion artifacts on the estimated SpO2 must be reduced. This study investigates the use of the smoothed psuedo Wigner-Ville distribution (SPWVD) for the reduction of motion artifacts affecting pulse oximetry. METHODS: The SPWVD approach is compared with two techniques currently used in this field, i.e. the weighted moving average (WMA) and the fast Fourier transform (FFT) approaches. SpO2 and pulse rate were estimated from a photoplethysmographic (PPG) signal recorded when subject is in a resting position as well as in the act of performing four types of motions: horizontal and vertical movements of the hand, and bending and pressing motions of the finger. For each condition, 24 sets of PPG signals collected from 6 subjects, each of 30 seconds, were studied with reference to the PPG signal recorded simultaneously from the subject's other hand, which was stationary at all times. RESULTS AND DISCUSSION: The SPWVD approach shows significant improvement (p < 0.05), as compared to traditional approaches, when subjects bend their finger or press their finger against the sensor. In addition, the SPWVD approach also reduces the mean absolute pulse rate error significantly (p < 0.05) from 16.4 bpm and 11.2 bpm for the WMA and FFT approaches, respectively, to 5.62 bpm. CONCLUSION: The results suggested that the SPWVD approach could potentially be used to reduce motion artifact on wearable pulse oximeters

    Formation of Metal Oxides Based Surface Nanolenses and Their Optical Properties

    Get PDF
    An emerging resource in the production of renewable energy are nanolenses, due to their unique optical properties. Their ability to refract light makes it possible for them to focus light and convert it into other forms of energy; which reduces the need for burning fossil fuels. &nbsp; nanolens, nanodroplets, optical properties, fluid cell, surface nanolens The formation of nanolenses occurs due to the process of solvent exchange. In this process, different concentrations of a ternary mixture comprising of oleic acid, water, and ethanol are used to create an ideal formation of nanodroplets. A mixture of iron (IV) chloride and manganese chloride is then washed over the droplets to create the droplet’s shell. The droplets are then annealed at 300°C in order to remove all excess liquid, leaving behind the hollow nanolenses. This process was carried out on two different substrates, silicon wafer and glass with similar results transpiring on both. &nbsp;After various trials, it can be concluded that the ideal concentration ratio of oleic acid/water/ethanol is 4.25/30/70, as the lenses are homogeneous in size, volume, and distribution. Allowing them to remain intact through the annealing process. These findings can be applied to further studies in the use of nanolenses concerning light refraction, and the consequential production of renewable energy

    Mechanisms of cell death pathway activation following drug-induced inhibition of mitochondrial complex I

    Get PDF
    AbstractRespiratory complex I inhibition by drugs and other chemicals has been implicated as a frequent mode of mitochondria-mediated cell injury. However, the exact mechanisms leading to the activation of cell death pathways are incompletely understood. This study was designed to explore the relative contributions to cell injury of three distinct consequences of complex I inhibition, i.e., impairment of ATP biosynthesis, increased formation of superoxide and, hence, peroxynitrite, and inhibition of the mitochondrial protein deacetylase, Sirt3, due to imbalance of the NADH/NAD+ ratio. We used the antiviral drug efavirenz (EFV) to model drug-induced complex I inhibition. Exposure of cultured mouse hepatocytes to EFV resulted in a rapid onset of cell injury, featuring a no-effect level at 30µM EFV and submaximal effects at 50µM EFV. EFV caused a concentration-dependent decrease in cellular ATP levels. Furthermore, EFV resulted in increased formation of peroxynitrite and oxidation of mitochondrial protein thiols, including cyclophilin D (CypD). This was prevented by the superoxide scavenger, Fe-TCP, or the peroxynitrite decomposition catalyst, Fe-TMPyP. Both ferroporphyrins completely protected from EFV-induced cell injury, suggesting that peroxynitrite contributed to the cell injury. Finally, EFV increased the NADH/NAD+ ratio, inhibited Sirt3 activity, and led to hyperacetylated lysine residues, including those in CypD. However, hepatocytes isolated from Sirt3-null mice were protected against 40µM EFV as compared to their wild-type controls. In conclusion, these data are compatible with the concept that chemical inhibition of complex I activates multiple pathways leading to cell injury; among these, peroxynitrite formation may be the most critical
    • …
    corecore