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Abstract

The inverse p-median problem consists in changing the weights of the customers of a p-median location problem at
minimum cost such that a set of p prespeci3ed suppliers becomes the p-median. The cost is proportional to the increase
or decrease of the corresponding weight. We show that the discrete version of an inverse p-median problem can be
formulated as a linear program. Therefore, it is polynomially solvable for 3xed p even in the case of mixed positive
and negative customer weights. In the case of trees with nonnegative vertex weights, the inverse 1-median problem is
solvable in a greedy-like fashion. In the plane, the inverse 1-median problem can be solved in O(n log n) time, provided
the distances are measured in l1- or l∞-norm, but this is not any more true in R3 endowed with the Manhattan metric.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and problem statement

Inverse optimization problems have recently generated a considerable interest. In 1992, Burton and Toint [3] introduced
the inverse shortest path problem with an interesting application to geological sciences. Given a network, they change the
edge lengths as little as possible such that a given path becomes the shortest path. In the same year, Berman et al. [1]
published a paper on how a transportation network can be modi3ed in an e?cient way in order to improve the known
location of the facilities. Later, the same authors [2] considered the analogous problem for the minimax objective. In both
papers they improve the network by changing the length of the arcs and by introducing new arcs. A similar question was
treated by Zhang et al. [12]. They present a strongly polynomial algorithm for shortening the lengths in a tree network
within a given budget such that the longest distance from a given facility to all other nodes becomes minimum. On
the other hand, Cai et al. [4] proved that the inverse center location problem is NP-hard, though the underlying center
location problem is polynomially solvable. For further results on inverse optimization including network and location
models we refer the interested reader to the excellent survey on this topic compiled recently by Heuberger [9].
In this paper we introduce inverse p-median problems. We show that the discrete inverse p-median problem can be

solved in polynomial time provided p is 3xed and not an input parameter. In particular, we develop a greedy-like algorithm
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for the inverse 1-median problem in trees with positive weights. Further, we consider inverse 1-median problems in the
plane and derive particularly simple solution algorithms in the case that the distances are measured in l1- or l∞-norm.
An example will show that the greedy method does not work in Rn; n¿ 3 endowed with the Manhattan metric.
The p-median problem can be stated as follows: let (X; d) be a metric space with distance function d. Let n points

P1; P2; : : : ; Pn (called customers) be given. Let w1; w2; : : : ; wn be weights for the customers. Find p new points s1; s2; : : : ; sp
in X , called suppliers, such that

n∑
i=1

wi min
k=1;:::;p

d(Pi; sk)

becomes minimum. In the classical case the weights wi; i = 1; 2; : : : ; n, are positive. Recently, obnoxious facilities have
also been considered which are modelled by negative weights wi, see e.g. the surveys of Cappanera [5] and Plastria [11].
We may distinguish between location problems in space, say e.g., in the plane, where diNerent distance functions may
be used, and discrete location problems. In discrete location problems either the distances between all customers and
suppliers are explicitly given or customers and suppliers are interpreted as vertices of a 3nite graph with positive edge
lengths. In this case the distances are given by the lengths of shortest paths in the graph.
Now let us de3ne the inverse p-median problem: we specify p points s1; s2; : : : ; sp of the metric space X and want

to modify the customer weights such that the set of these points becomes the p-median. Suppose that we incur the
nonnegative cost ci, if the weight wi is increased by one unit, and we incur the nonnegative cost di, if we decrease the
weight wi by one unit. We assume that it is not possible to increase or decrease the customer weights arbitrarily. Namely,
the customer weights have to obey the bounds 06wi6wi6 Pwi; 16 i6 n. Now we can state the inverse p-median
problem as follows:
Inverse p-median problem. Find new customer weights w∗

i ; 16 i6 n, such that the set of points {s1; s2; : : : ; sp} is a
p-median with respect to the new weights w∗

i , the new weights lie within given bounds wi6w∗
i 6 Pwi for all i; 16 i6 n,

and the total cost for changing the weights becomes minimum.
In the discrete case we can describe the inverse p-median problem by a linear program. Let U = {u1; u2; : : : ; un} be

a 3nite set whose elements are called customers. Every customer ui has a weight wi. Moreover, let V = {v1; v2; : : : ; vm}
be a 3nite set whose elements are possible suppliers and let d(u; v) be the distance between customer u and supplier v.
Moreover, let S denote the class of all subsets S ⊆ V of cardinality |S|= p. For {s1; s2; : : : ; sp} being a p-median with
respect to the customer weights wi, i = 1; : : : ; n, it is necessary and su?cient that

n∑
i=1

wi min
k=1;:::;p

d(ui; sk)6
n∑
i=1

wi min
k∈S

d(ui; vk)

holds for all S ∈S. Let pi denote the amount by which the customer weight wi is increased. Similarly, let qi denote the
amount by which the customer weight wi is decreased. Then the inverse p-median problem can be written as

min
n∑
i=1

(cipi + diqi)

s:t:
n∑
i=1

(wi + pi − qi)aiS6 0 for all S ∈S;

wi − qi¿wi; i = 1; 2; : : : ; n;

wi + pi6 Pwi; i = 1; 2; : : : ; n;

pi¿ 0; i = 1; 2; : : : ; n;

qi¿ 0; i = 1; 2; : : : ; n;

where

aiS := min(d(ui; s1); d(ui; s2); : : : ; d(ui; sp))−min
k∈S

d(ui; vk):

Thus discrete inverse p-median problems are solvable in polynomial time provided p is given and is not an input
parameter. The linear program has O(( pm )) constraints. Therefore, it is tractable in practice only for a rather small p-median
set. Note that due to the nonnegativity assumptions on ci and di we can always assume that in the optimal solution one
of the values pi or qi is equal to 0. Since the above considerations also apply to the case of negative customer weights
and to the case of mixed positive and negative customer weights, the discrete inverse obnoxious p-median problem as
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well as the discrete inverse pos/neg weighted p-median problem are also solvable in polynomial time. Summarizing we
have

Proposition 1.1. The discrete inverse p-median problem, where the customers may have any real weight, is solvable in
polynomial time provided p is 7xed and not an input parameter.

In the next section we deal with inverse 1-median problems in trees and derive a greedy algorithm in the case of
nonnegative weights. Then we address the inverse 1-median problem in the plane, in particular, if the distances are
measured in the l1-norm. It is well known that the 1-median problem with Manhattan distance in Rn(n¿ 2) can be
decomposed into n 1-median problems on a line which correspond to problems in a tree. This decomposition, however, is
not possible for the inverse 1-median problem in Rn(n¿ 2) endowed with the Manhattan metric: for example, if we change
a weight in order to solve the problem in x-direction, then the weight change also inRuences the problem in y-direction.
An analysis of the situation in the plane leads, however, again to a simple algorithm for solving planar inverse 1-median
problems. The planar problem where the distances are measured in the l∞ norm can be reduced to the former case. An
example shows, however, that the greedy algorithm cannot be extended to R3 endowed with the Manhattan metric.

2. The inverse 1-median problem in trees

In the following, we consider the case that customers and supplier correspond to the vertices of a tree graph G=(V; E)
with vertex set V and edge set E. All vertex weights are nonnegative. As has been shown by Hua et al. [10] and, one
year later, by Goldman [7] the 1-median problem on trees has the interesting property that the solution is completely
independent of the (positive) edge lengths and only depends on the weights of the vertices. Let

W :=
n∑
i=1

wi

be the sum of all vertex weights of the tree. Now, let v be an arbitrary vertex of the tree of degree k and let v1; v2; : : : ; vk
be its immediate neighbors. If we root the tree in v, we get subtrees T1; T2; : : : ; Tk which are rooted in v1; v2; : : : ; vk ,
respectively. We denote by w(Ti) the sum of all vertex weights of subtree Ti. A consequence of the considerations of
Hua et al. and Goldman is the following optimality criterion.

Lemma 2.1 (Optimality criterion; [7,10]). A vertex v is a 1-median of the given tree, if and only if the weights of all
its subtrees w(Ti) are not larger than W=2:

max
16i6k

w(Ti)6
W
2
: (1)

Now let m be a 1-median and let s; s �= m not be a 1-median of the graph with respect to the given weights. Let
us assume that we want vertex s to become a 1-median with respect to modi3ed vertex weights. If we root the tree in
vertex s, we get subtrees T1; : : : ; Tk , where k is the degree of vertex s. One of these subtrees contains vertex m, say Tk .
If s is not a 1-median for the weight w, then we know that w(Ti)¡W=2 for all i = 1; : : : ; k − 1 and w(Tk)¿W=2. This
follows from the fact that m is a 1-median and s lies in one of the subtrees of weight 6W=2 which are rooted in m.
Since T1; : : : ; Tk−1 also lie in the same subtree rooted in m, they must have a weight ¡W=2.
Let W0 denote the current weight of vertex s which is supposed to become the 1-median and let Wi denote the sum

of the current weights of the vertices in the subtrees Ti, i = 1; : : : ; k. Moreover, we de3ne H :=
∑k

i=0Wi=2. During the
following algorithm we shall change the weights wi; i=1; 2; : : : ; n, and therefore also the amounts Wi; i=0; 1; : : : ; k. In our
considerations the optimality gap D := Wk − H will play an important role.

Lemma 2.2. Let W16W=2; : : : ; Wk−16W=2. The vertex s is a 1-median, if and only if the optimality gap D = 0.

Proof. D = 0 if and only if Wk =W=2. It follows directly from Lemma 2.1 that in this case s is a 1-median.

If we change the weight of s or of a vertex in the subtrees T1; : : : ; Tk−1 by !, then D changes by −!=2. Otherwise,
if we change the weight of a vertex in the subtree Tk by the amount !, then the optimality gap changes by !=2, since
Wk+!−(H+!=2)=D+!=2. Thus, we decrease D if we either increase the weight of s or of a vertex in Ti, i=1; 2; : : : ; k−1,
or if we decrease the weight of a vertex in Tk . On the other hand, any operation which worsens D must be “neutralized”
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by a change which decreases D by the same amount. Since both operations (the increase of D and the decrease thereafter)
cause nonnegative cost and, in addition the solution without increase of D and neutralization thereafter is feasible, we
can restrict ourselves to increasing the weight of s or of a vertex in Ti, i = 1; 2; : : : ; k − 1, and decreasing the weight of
vertices in Tk .
Therefore, we consider the cost coe?cients c for the root and the vertices in the 3rst k − 1 subtrees and the cost

coe?cients d for the vertices in the last subtree. We order these n cost coe?cients increasingly in a list

r’(1)6 r’(2)6 · · ·6 r’(n);

where ’ is a permutation of the set {1; 2; : : : ; n}. If vertex v’(l) is either s or belongs to one of the 3rst k − 1 subtrees,
then r’(l) is the coe?cient c’(l). If, however, v’(l) is a vertex of subtree Tk , then r’(l) is the coe?cient d’(l).
Let us assume that r’(1) = c1. In order to decrease the optimality gap, we can increase the weight w1 by p1. We

distinguish two cases:
Case A: By increasing the weight w1, we can re-establish the optimality, namely Wk = p1=2 + H . Thus, p1 becomes

p1 = 2(Wk − H) =Wk −
k−1∑
i=0

Wi:

In this case we are done. Note that in this case the subtree Tk has exactly half the weight of the whole tree, i.e., D= 0.
Therefore any other subtree T1; T2; : : : ; Tk−1 has a weight not larger than half of the total weight. Thus the optimality
criterion is ful3lled.
Case B: w∗

1 := w1 + p1 attains the upper bound of vertex v1. This means that p1 = Pw1 − w1. Since p1 cannot be
increased further, we delete r’(1) from our list and proceed with the next smallest element r’(2).
Now, if the 3rst element r’(1) in the list is d1, then v1 lies in the subtree Tk and we can reduce the current weight of

this vertex by q1. Again we distinguish the following two cases:
Case A: By decreasing the weight w1, we can re-establish optimality, namely

Wk − q1 =

(
k−1∑
i=0

Wi +Wk − q1

)/
2:

Thus q1 becomes Wk −∑k−1
i=0 Wi. Note again that in this case the subtree Tk has exactly half the weight of the whole

tree. Therefore the 3rst k − 1 subtrees have a weight smaller than H − q1=2. Thus the optimality criterion is ful3lled.
Case B: w∗

1 := w1−q1 attains the lower bound of vertex v1. This means that q1=w1−w1. Since w1 cannot be decreased
any more, we delete r’(1) from our list and proceed with the next smallest element r’(2).
These considerations show that we can proceed in a greedy fashion in order to solve the inverse 1-median problem on a

tree: 3rst, we generate the ordered list r’(1)6 r’(2)6 · · ·6 r’(n). Then we choose the 3rst element of this list and decrease
or increase the corresponding weight according to the above rules. If an upper or lower bound is met, we delete this
element and proceed to the next element. As soon as Case A applies for the 3rst time we stop. In this case vertex s has
become a 1-median of G. Due to the ordering of the cost coe?cients any other distribution of the weights which makes
s the 1-median of G would have an equal or larger cost. Therefore the algorithm yields an optimal solution. Summarizing
we get

Algorithm 1. Solves the inverse 1-median problem in a tree, vertex s being the new 1-median
1: Compute the total weight W :=

∑n
i=1 wi.

2: Compute the weight of the subtrees rooted in s.
If all subtrees have a weight 6W=2, then stop: the given weights are already optimal,
else let T0 denote the subtree with largest weight W0.

3: For i := 1; 2; : : : ; n, if vertex vi is s or belongs not to T0, then ri := ci, else ri := di.
4: Set D := W0 −W=2;R := {r1; r2; : : : ; rn}.
5: If R �= ∅ 3nd a minimum element ri of R,

else stop: there does not exist a feasible solution.
6: If ri = ci, then pi := min(2D; Pwi − wi);D := D − pi=2;

else qi := min(2D; wi − wi);D := D − qi=2.
7: If D = 0, then stop: an optimal solution is reached,

else return to Step 5.

Proposition 2.3. The inverse 1-median problem in a tree can be solved in O(n log n) time by a greedy-type algorithm.
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Since the procedure for establishing the optimality of a vertex s uses only comparisons and additions, it also works
if the vertex weights of G are nonnegative elements of an arbitrary totally ordered semigroup (H; ∗;6) with semigroup
operation ∗ and order relation 6. An element a∈H is called nonnegative, if we have a ∗ c¿ c for all c∈H .
Note that the optimality criterion of Lemma 2.1 only holds for trees with nonnegative weights. Therefore, it can neither

be used in the case of inverse obnoxious 1-median problems on trees nor for 1-median problems in general graphs. In the
latter case the edge lengths cannot be neglected. In general graphs we have to guarantee that the vertex s is the 1-median
in the shortest path tree rooted in s (which could easily be achieved by the algorithm outlined above), and in addition that
no other shortest path tree leads to a smaller value for the function

∑n
i=1 wid(vi; s), i.e., that s is indeed the 1-median of

the graph. To give an example, consider a cycle with three vertices a; b and c, edge lengths [a; b] = 3; [b; c] = 1; [a; c] = 2
and vertex weights wa = wb = wc = 1. It is easy to see that vertex c is the 1-median of the cycle. Let vertex a be our
candidate for the 1-median. This vertex is already the 1-median in the shortest path tree rooted in a but not the 1-median
of the cycle. In order that vertex a becomes a 1-median of the cycle we have, e.g., to change the weight wa to 2.

3. Inverse 1-median problems in the plane

The continuous 1-median problem in the plane can be stated as follows: let n points P1; P2; : : : ; Pn be given in the plane.
Every point Pi has some weight wi. We assume throughout this section that all given weights are positive. Moreover,
an appropriate distance measure d(Pi; Pj) is 3xed, e.g., the Euclidean distance, the Manhattan distance and so on. Find a
new point P0 (the 1-median) in the plane such that

n∑
i=1

wid(Pi; P0)

becomes minimum. In the inverse version of this problem, we are given n+ 1 points P0; P1; P2; : : : ; Pn in the plane with
weights wi; i=0; 1; : : : ; n. By changing the weights at minimum cost we want the point P0 to become a 1-median of these
points. For this reason point P0 must lie in the convex hull of the points Pi, i=1; : : : ; n, since otherwise there will be no
feasible solution. Every weight wi can only be changed between a lower bound wi¿ 0 and an upper bound Pwi. The cost
for increasing the weight wi by one unit is ci and the cost for decreasing this weight by one unit is di. The total cost is
measured by the function

n∑
i=0

cipi + diqi; (2)

where pi is the amount by which wi is increased and qi is the amount by which the weight wi is decreased. We call a
solution (pi; qi), i = 0; 1; 2; : : : ; n, feasible, if it guarantees that P0 is a 1-median and if it ful3lls the bound constraints.
The cost of a feasible solution is given by (2).
In the following we shall deal with the Manhattan distance. It is well known that the 1-median problem with Manhattan

distance in Rn(n¿ 2) can be split into n 1-median problems on a line which can be solved in a straightforward way. Note,
however, that this decomposition is not possible for the inverse 1-median problem in Rn(n¿ 2) with Manhattan distance:
if we change a weight in order to solve the problem in x-direction, then the weight change also inRuences the problem
in y-direction. In the following we will 3rst investigate the connection between weight changes in x- and y-directions.
By analyzing the situation in the plane we will show that the weight changes must ful3ll a system of three inequalities.
Finding the cheapest solution amounts in solving a linear program with these three inequalities and the weight bounds as
a constraint set. Though in general it is not possible to solve this LP by a greedy method (an example will be given), it
can be shown that due to the special right-hand side of the LP arising from the problem in the plane it can be solved in
a greedy fashion. Thus, the algorithm for solving the inverse 1-median problem in the plane under the assumption that
distances are measured by the Manhattan metric turns out to be a nontrivial generalization of the greedy method used to
solve the inverse 1-median problem in trees and cannot be further generalized to solve problems in higher dimensions.
First, we are going to show that the actual distances between the points do not play any role. It will only be important

to know whether the points lie left or right and below or above the point P0.
Let (xi; yi) be the coordinates of point Pi, i=0; 1; : : : ; n. In the following we always assume that P0 should become the

1-median. From now on we make use of the following notation:

X∼ := {i | xi ∼ x0}; WX∼ :=
∑
i∈X∼

wi;

Y∼ := {i | yi ∼ y0}; WY∼ :=
∑
i∈Y∼

wi;
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where ∼ is any of the relations =;¡ ;6 ;¿ ;¿. We say a point Pi = (xi; yi) ful3lls X∼ (Y∼), if xi ∼ x0 (yi ∼ y0)
holds. Using this notation the well-known optimality conditions for the 1-median problem in the plane equipped with the
Manhattan distance can be expressed as follows:

Lemma 3.1 (Optimality condition). P0 is a 1-median if and only if

WX¡ −WX¿6 0; (3)

WX¿ −WX66 0; (4)

WY¡ −WY¿6 0; (5)

WY¿ −WY66 0: (6)

Remark. Note that the distances between the points do not play any role, only their weights do.
We give a short proof of this lemma, see e.g. [8], since it shows why the distances do not play any role. An analogous

proof applies in the case of the space Rn(n¿ 3) equipped with the l1-norm. Therefore the optimality conditions of Lemma
3.1 can easily be generalized for 1-median problems in Rn(n¿ 3).

Proof. Let w∗
i be those weights for the given points such that P0 is a 1-median of the given points P1; : : : ; Pn under the

l1-norm. This means that the function

f(); *) =
n∑
i=0

w∗
i |)− xi|+

n∑
i=0

w∗
i |*− yi|

takes its minimum in P0. Since the function f(); *) is separable we have

min
);*
f(); *) = min

)

n∑
i=0

w∗
i |)− xi|+min

*

n∑
i=0

w∗
i |*− yi|:

The functions f1()) :=
∑n

i=0 w
∗
i |) − xi| and f2(*) := ∑n

i=0 w
∗
i |* − yi| are piecewise linear and convex functions with

breakpoints in )=xi and *=yi; i=0; 1; : : : ; n, respectively. f1 has a minimum at x0 if and only if the unilateral derivatives
f′
1(x0+) and f

′
1(x0−) in point x0 ful3ll:

f′
1(x0−)6 0 and f′

1(x0+)¿ 0:

It is easy to see that

f′
1(x0−) =WX¡ −WX¿;

f′
1(x0+) =WX6 −WX¿:

The same holds for the unilateral derivatives of f2(*) and the sets WY∼. From this the optimality conditions follow in a
direct way.

Let

DX := max(WX¡ −WX¿; WX¿ −WX6) = |WX¡ −WX¿| −WX=;

DY := max(WY¡ −WY¿; WY¿ −WY6) = |WY¡ −WY¿| −WY=:

We introduce the optimality gap

D := max{0; DX ; DY}:
According to Lemma 3.1 a solution is optimal, if and only if D = 0.
For the following considerations we shall always assume that D is positive, since otherwise P0 would already be optimal.

Let D be attained by WX¡ −WX¿. We are going to change the weights at minimum cost such that inequalities (3)–(6)
hold for the modi3ed weights. Since we shall see later in the remark after Lemma 3.3 that the optimal solution found
will ful3ll the relation of the form (4) anyhow, we consider in the sequel only relations (3), (5) and (6).
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Let (pi; qi), i = 0; 1; : : : ; n, be a feasible solution with total cost C′ of the inverse 1-median problem where
∑n

i=0(pi +
qi)¿D. We are going to show that there exists a feasible solution (p̂i; q̂i), i = 0; 1; : : : ; n, with

n∑
i=0

(p̂i + q̂i) = D; p̂i¿ 0; q̂i¿ 0

and cost C6C′. We partition the plane into 6 regions, namely

R0 := X¿ ∩ Y=;

R1 := X¿ ∩ Y¡;

R2 := X¿ ∩ Y¿;

R3 := X¡ ∩ Y=;

R4 := X¡ ∩ Y¡;

R5 := X¡ ∩ Y¿:
We now consider the points in a 3xed region Rk . In a feasible solution the weight of these points is either increased by
pi or decreased by qi. Let

rk :=
∑
Pi∈Rk

(pi − qi); for k = 0; 1; : : : ; 5:

Due to the bounds for the weights we retain the feasibility of the solution and do not increase the cost if we can replace
the values pi and qi by smaller values while not changing the sums WX¡;WX¿ and WY¡;WY¿;WY=.
First we notice that there is a feasible solution with the following property: in any of the 6 regions R0; : : : ; R5 there

are only positive values for pi or only positive values for qi, but not for both at the same time, i.e., pi · qj = 0 holds for
any pair of points Pi; Pj ∈Rk . Namely, if in the region Rk there are positive pi and qj , we could increase or decrease the
weights less without changing the value of rk . For example, if pi = 2 and qj = 3, we get the same value for rk if we
do not change the weight of point Pi (i.e., pi = 0) and set qj = 1. According to the above remark this would result in
another feasible solution without increasing the cost.
The feasibility of the solution implies

WX¡ + r3 + r4 + r5 − (WX¿ + r0 + r1 + r2)6 0 (7)

and further that

WY¡ + r1 + r4 − (WY¿ + r0 + r2 + r3 + r5)6 0;

WY¿ + r2 + r5 − (WY6 + r0 + r1 + r3 + r4)6 0:

Let us de3ne

a1 := r0;

a2 := r1 − r5;

a3 := r2 − r4;

a4 := −r3:
Then, setting

D1 := WY¡ −WY¿;

D2 := WY¿ −WY6;

we get

D6 a1 + a2 + a3 + a4;

D16 a1 − a2 + a3 − a4;

D26 a1 + a2 − a3 − a4: (8)
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Thus we get

Lemma 3.2. A feasible solution of the planar inverse 1-median problem where the distances are measured with the
Manhattan metric ful7lls the inequality system (8).

In order to 3nd an optimal solution, we show 3rst that we can assume that inequality (7) holds as equation, i.e. that
D = a1 + a2 + a3 + a4. This is an important observation (which is not any more true in R3; see the example in Section
3.2).

Lemma 3.3. If the problem is feasible, then there exists an optimal solution with

a1 + a2 + a3 + a4 = D: (9)

Lemma 3.3 can be proven by analyzing the complimentary slackness conditions of the linear program with constraint set
(8) and the bounds on the weights. Since the proof is rather technical, it is transferred to the appendix.

Remark. Note that due to (9) optimality condition (4) is also full3lled. Namely, let W̃X¿ and W̃X6 denote the transformed
weights in X¿ and X6. Then we have

W̃X¿ − W̃X66 W̃X¿ − W̃X¡

=WX¿ −WX¡ + r0 + r1 + r2 − r3 − r4 − r5 =−D + a1 + a2 + a3 + a4 = 0:

By subtracting the second and third inequalities from the 3rst equation in

D6 a1 + a2 + a3 + a4;

D16 a1 − a2 + a3 − a4;

D26 a1 + a2 − a3 − a4

we get

a2 + a46 1=2(D − D1)= : b1; (10)

a3 + a46 1=2(D − D2)= : b2: (11)

In the following, we shall deal with the system

a1 + a2 + a3 + a4 = D; (12)

a2 + a46 b1; (13)

a3 + a46 b2: (14)

First, we show that it can be assumed that all values a1; a2; a3 and a4 are nonnegative. This is the statement of the
following lemma.

Lemma 3.4. If the problem is feasible, then there exists an optimal solution where the weights of some points in X¿
are increased and the weights of some points in X¡ are decreased.

Proof. For the proof, we have to show that there is an optimal solution where all values r0; r1; r2 are nonnegative and
r3; r4; r5 are nonpositive. We start by proving that a1; a2; a3 and a4 can be considered as nonnegative. Assume that a1 is
negative. Due to Eq. (12) we get a2 + a3 + a4 =D+ |a1|. Therefore, a1 can be set to 0 by reducing some of the positive
summands in a2; a3 and a4 by an amount which keeps them nonnegative, but sums up to |a1|. Thus the feasibility of
the solution with respect to the weight bounds as well as with respect to the feasibility conditions (12)–(14) is retained.
Since the weight changes are reduced, the cost does not increase.
Now let us assume that a2¡ 0. If a4¿ 0, we can reduce a4 by ! := min(a4; |a2|) by setting a2 := a2 + !; a4 := a4 − !.

This transformation keeps the solution feasible and does not increase the cost. If after this transformation a2 is still
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negative, we can reduce other positive summands a1; a3; a4 arbitrarily until a2 = 0 is reached, but keeping the summands
nonnegative. Again, feasibility is retained and the cost is not increased. An analogous argument applies to negative values
of a3.
Thus, we now can assume that a1; a2 and a3 are nonnegative. Let a4¡ 0. In this case we get

a1 + a2 + a3 = D + |a4|; (15)

a26 b1 + |a4|; (16)

a36 b2 + |a4|: (17)

First we can reduce a2 by !1 := min(a2; |a4|; b2 + |a4|−a3), i.e. a2 := a2−!1 and a4 := a4 +!1. If after this transformation
a4 = 0, we are 3nished, since the feasibility has been retained. If, however, after the transformation the new value of a4
is still negative, we have to consider several cases:

• Case 1: a2 = 0. In this case we 3rst reduce a3 by !2 := min(a3; |a4|) and, if after this transformation a4 is still
negative, the coe?cient a1. This renders inequalities (16) and (17) valid and reduces the positive values of a1 and
a3, thus retaining the feasibility.

• Case 2: a2¿ 0; !1 = b2 + |a4| − a3. In this case (17) holds as an equation. We distinguish again two cases:
◦ Case 2a: b1 + |a4| − a2¿ 0. We determine !2 := min(a3; |a4|; b1 + |a4| − a2) and set a3 := a3 − !2; a4 := a4 + !2.
This transformation retains the feasibility of the solution and does not increase the cost. If afterwards a4 = 0, we
are done. So we assume a4¡ 0. The case a3 =0 cannot occur, since !1 =b2 + |a4|−a3 implies |a4|=a3−b2¡ 0,
which is a contradiction to min(a3; |a4|) = a3. If, however, a3¿ 0 and |a4|¿ 0, both inequalities (16) and (17)
now hold as equations and we come to Case 2b.

◦ Case 2b: Eq. (16) also holds as an equation. We show that this cannot occur. By adding Eqs. (16) and (17)
we get

a2 + a3 = b1 + b2 + 2|a4|= D +WY= + 2|a4|:
Introducing Eq. (15) we get

a2 + a3 = a1 + a2 + a3 +WY= + |a4|
and therefore

0 = a1 +WY= + |a4|:
Since a1¿ 0 and |a4|¿ 0 according to the assumptions, and WY=¿ 0 according to the assumption of nonnegative
weights, we arrive at a contradiction. Therefore Case 2b cannot occur, provided that we start with a feasible
solution.

Thus we can reach a feasible solution with a1; a2; a3; a4¿ 0.
Once these coe?cients are 3xed to nonnegative values, the positive coe?cients r0; r1; r2 can be decreased and the

negative coe?cients r3; r4; r5 can be increased until all values r0; r1; r2 are nonnegative and r3; r4; r5 are nonpositive. This
reduction is feasible with respect to the weight bounds, does not increase the cost and keeps the values a1; a2; a3; a4¿ 0
unchanged. Therefore the feasibility conditions (12)–(14) are also met.

The following striking lemma yields the last argument for developing a greedy algorithm.

Lemma 3.5. If the problem is feasible, then increasing the weights of some points in X¿ and decreasing the weights of
some points in X¡ in a greedy fashion yields an optimal solution.

Proof. Because of Lemma 3.4 it just remains to show that changing the cheapest possible weights which increase WX¿
or decrease WX¡ leads to an optimal solution of the inverse 1-median problem, i.e., a solution which ful3lls (12)–(14).
We de3ne

X∼Y≈ := {i | xi ∼ x0; yi ≈ y0}; WX∼Y≈ :=
∑

i∈X∼Y≈

wi;
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where ∼ and ≈ are any of the relations =;¡ ;6 ;¿ ;¿. Using this notation, D; b1 and b2 are composed in the following
way:

WX¡Y¡ +WX¡Y¿ + WX¡Y= − WX¿Y¡ −WX¿Y¿ −WX¿Y= = D;

WX¡Y¿ + WX¡Y= − WX¿Y¡ = b1;

WX¡Y¡ + WX¡Y= − WX¿Y¿ = b2:

By combining these equations we get

WX¡Y= +WX¿Y= = b1 + b2 − D:

Since the initial weights are all positive, this shows

WX¡Y=6 b1 + b2 − D: (18)

Then the positivity of the lower bounds for the weights implies that WX¡Y= can be reduced by at most b1 +b2 −D units,
or in our notation,

a46 b1 + b2 − D: (19)

Therefore, we can add constraint (19) to constraints (12)–(14) without aNecting the optimal solution:

min
n∑
i=0

cipi + diqi

s:t: a1 + a2 + a3 + a4 = D;

a2 + a46 b1;

a3 + a46 b2;

a46 b1 + b2 − D;

wi + pi6 Pwi; i = 0; 1; : : : ; n;

wi − qi¿wi; i = 0; 1; : : : ; n;

pi¿ 0; qi¿ 0; i = 0; 1; : : : ; n: (20)

If the greedy algorithm 3nds a solution with a4 = 0 it is clearly optimal, since the values of a1; a2 and a3 do not aNect
each other. So, assume that in the current step a4 should be increased. This is possible up to ! := min{b1; b2; b1 +b2−D}
at most. Afterwards,

a1 + a2 + a3 = D − !;

a2 6 b1 − !;

a36 b2 − !:

The inequalities

b1 − !+ b2 − != b1 + b2 − 2!¿WX¡Y= + D − 2!¿D − !;

using (18) and WX¡Y=¿ ! show that the change of a4 also does not aNect the values of a1; a2; a3 and vice versa. That
is, the greedy algorithm yields an optimal solution of problem (20).

Remark. In general, linear programs of the form

min
4∑
i=1

ciai

s:t: a1 + a2 + a3 + a4 = D;

a2 + a46 b1;

a3 + a46 b2;

ai¿ 0; i = 1; : : : ; 4
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are not solvable by a greedy method. Consider the problem
min 99a1 + 9a2 + 9a3 + a4

s:t: a1 + a2 + a3 + a4 = 8;

a2 + a46 2;

a3 + a46 5;

ai¿ 0; i = 1; : : : ; 4:

Here, the greedy algorithm obtains the solution a4 = 2; a3 = 3; a1 = 3; a2 = 0 with cost 326. The optimal solution, however,
is a1 = 1; a2 = 2; a3 = 5; a4 = 0 with cost 162.

Lemma 3.5 implies that retaining feasibility we can 3nd an optimal solution by performing the cheapest weight changes,
until the optimality condition D = 0 is reached. To do so we arrange the given points Pi, i = 0; 1; : : : ; n, in one list such
that the coe?cients ci of points Pi ∈X¿ and the coe?cients di of Pi ∈X¡ are sorted increasingly. Then the weights of the
points are changed in this order. This ensures feasibility for X , since each such change reduces D. Additional restrictions
for the weight changes are needed in order to obtain a solution which is feasible for Y , i.e. meets

WY¡ −WY¿6 0

and

06WY6 −WY¿:

The actual value of D indicates the remaining value to be changed. After a new change by ! units there are D − !
units left to be changed. Then the solution must meet the feasibility conditions for Y , too. We consider three cases when
deriving the additional restrictions:

• If WY¡ is increased by ! units, we get the conditions

WY¡ −WY¿6− !+ (D − !) (21)

and

− !+ (D − !)6WY6 −WY¿: (22)

Inequality (21) implies that

!6 1
2 (WY¿ −WY¡ + D) = b1:

If (21) is ful3lled, (22) is met anyway. An analogous restriction is needed when decreasing WY¿.
• If WY¡ is decreased it has to be assured that

WY¡ −WY¿6 !− (D − !) (23)

and

!− (D − !)6WY6 −WY¿: (24)

Inequality (24) implies

!6 1
2 (WY6 −WY¿ + D) = b2:

If (24) is met, then (23) is met, too. An analogous result is obtained for increasing WY¿.
• The inequalities which have to be met after decreasing WY= are

WY¡ −WY¿6 !+ (D − !) (25)

and

!− (D − !)6WY6 −WY¿: (26)

Therefore, in this case

!6 1
2 (WY¿ −WY¡ + D) = b1

and

!6 1
2 (WY6 −WY¿ + D) = b2:
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These considerations imply that we have to distinguish 6 cases for the change of the weights. Let us recall that initially
D¿ 0, b1 = 1=2 · (D − D1) and b2 = 1=2 · (D − D2) holds.

• Case 0: Pi ∈R0. The weight can be increased by

! := min( Pwi − wi; D):

After this change the value D has to be adjusted to D − !.
• Case 1: Pi ∈R1. The weight can be increased by

! := min( Pwi − wi; D; b1):

After this change D and b1 have to be adjusted to D − ! and b1 − !, respectively.
• Case 2: Pi ∈R2. The weight can be increased by

! := min( Pwi − wi; D; b2):

After this change D and b2 have to be adjusted to D − ! and b2 − !, respectively.
• Case 3: Pi ∈R3. The weight can be decreased by

! := min(wi − wi; D; b1; b2):

After this change D; b1 and b2 are decreased by !.
• Case 4: Pi ∈R4. The weight can be decreased by

! := min(wi − wi; D; b2):

After this change D and b2 are decreased by !.
• Case 5: Pi ∈R5. The weight can be decreased by

! := min(wi − wi; D; b1):

After this change D and b1 are decreased by !.

Before we state the algorithm we get rid of the assumption that D = WX¡ − WX¿. In order to describe the coming
arguments in a compact form, we introduce the following notation. Let Z be either X or Y . If Z = X , then PZ = Y , and
vice versa. Moreover, let the relations A and B denote either ¡ or ¿. If A denotes ¡, then B denotes ¿ and PB denotes
¿. Vice versa, if A denotes ¿, then B denotes ¡ and PB denotes ≤. With this notation the preceding considerations can
be summarized in Algorithm 2.
Altogether, we get

Proposition 3.6. The inverse 1-median problem in the plane can be solved in O(n log n) time, provided the distances
between the points are measured in the Manhattan metric.

Algorithm 2. Solves the inverse 1-median problem under l1-norm
1. Determine

D := max{max
Z=X;Y

|WZ¡ −WZ¿| −WZ=; 0}.
2. If D = 0, then stop: an optimal solution has been found.

Else let Z ∈ {X; Y} and A∈ {¡;¿} be such that
D =WZA −WZ PB.

De3ne PZ := Y , if Z = X , and PZ := X , if Z = Y .
De3ne B :=¡, if A=¿, and B :=¿, if A=¡.
De3ne

b1 := 1=2 · (D +W PZ¿ −W PZ¡),
b2 := 1=2 · (D +W PZ6 −W PZ¿).

3. Sort the cost coe?cients ci for points Pi ∈ Z PB and the cost coe?cients di for points Pi ∈ ZA increasingly in one list.
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4. Consider the point Pi with the smallest not yet considered cost. If there does not exist such a coe?cient, then stop:
no feasible solution exists.

• If Pi ∈ Z PB ∩ PZ=, then
! := min( Pwi − wi; D),

wi := wi + !; D := D − !.
• If Pi ∈ Z PB ∩ PZ¡, then

! := min( Pwi − wi; D; b1),
wi := wi + !; D := D − !; b1 := b1 − !.

• If Pi ∈ Z PB ∩ PZ¿, then
! := min( Pwi − wi; D; b2),

wi := wi + !; D := D − !; b2 := b2 − !.
• If Pi ∈ ZA ∩ PZ=, then

! := min(wi − wi; D; b1; b2),
wi := wi − !; D := D − !; b1 := b1 − !; b2 := b2 − !.

• If Pi ∈ ZA ∩ PZ¡, then
! := min(wi − wi; D; b2),

wi := wi − !; D := D − !; b2 := b2 − !.
• If Pi ∈ ZA ∩ PZ¿, then

! := min(wi − wi; D; b1),
wi := wi − !; D := D − !; b1 := b1 − !.

5. If D = 0, then stop: an optimal solution has been found. Else return to Step 4.

3.1. The inverse 1-median problem under l∞-norm in the plane

In this section, denote the Manhattan distance between the points Pi = (xi; yi) and Pj = (xj; yj) by

l1((xi; yi); (xj; yj)) := |xi − xj|+ |yi − yj|
and the Tschebychev distance by

l∞((xi; yi); (xj; yj)) := max{|xi − xj|; |yi − yj|}:
The Tschebychev distance can be led back to the Manhattan distance:

Lemma 3.7 (Hamacher [8]). For P = (x; y)∈R2 let T (P) = ( 12 (x + y);
1
2 (−x + y)). Then for all Pi = (xi; yi) and Pj =

(xj; yj)∈R2:
l∞(Pi; Pj) = l1(T (Pi); T (Pj)):

When applying transformation T of Lemma 3.7, the feasibility conditions in the l∞-norm case,
n∑
i=0

(wi + pi − qi)[l∞(Pi; P0)− l∞(Pi; P)]6 0; for all P ∈R2;

become
n∑
i=0

(wi + pi − qi)[l1(T (Pi); T (P0))− l1(T (Pi); T (P))]6 0; for all P ∈R2:

This shows that after having transformed all given points Pi = (xi; yi), i = 0; 1; : : : ; n, to Pi = (12 (xi + yi);
1
2 (−xi + yi)),

i = 0; 1; : : : ; n, Algorithm 2 yields an optimal solution of the problem:

Proposition 3.8. The inverse 1-median problem under l∞-norm in the plane can be solved in O(n log n) time with
Algorithm 2 after having applied transformation T of Lemma 3.7 to the points.

3.2. Outlook

In the discrete case only the inverse 1-median problem on trees is easy to solve. For the problem on general graphs no
strongly polynomial algorithm is known. The inverse 2-median problem on trees is also unsolved. In the planar case, the
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inverse 1-median problem under l1- or l∞-norm can be solved with a greedy-type algorithm. For spaces with a dimension
higher than two, polynomial algorithms are not yet known. Note that the above algorithm cannot be adopted for spaces
Rn(n¿ 3), since there a greedy algorithm will not always yield an optimal solution. In particular, the weight changes in
an optimal solution do not necessarily sum up to the optimality gap.

Example. Consider an inverse 1-median problem in R3 endowed with the Manhattan metric. Let the following data be
given. The points are {P0 = (5; 4; 6); P1 = (1; 1:5; 1); P2 = (8:5; 5:5; 3:3); P3 = (7:5; 3:5; 6:5); P4 = (7; 5; 7:8); P5 = (4:3; 4:5; 6)}.
The initial weights are w=(4; 7; 10; 5; 2; 5), the costs are c=(80; 50; 1; 1; 10; 1), d=(90; 10; 50; 1; 20; 50). All weights have
a lower bound 0 and an upper bound 10. The analogous greedy algorithm in R3 would yield the solution q2 = 1 with
cost 50. The optimal solution, however, is p3 = 1; q4 = 1; p5 = 1 with cost 22.

Further open problems concern continuous inverse p-median problems, p¿ 1, where the distances are measured by l2-
or general lp-norms as well as obnoxious inverse p-median problems.
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Appendix

In order to prove Lemma 3.3 we formulate the inverse 1-median problem as the following linear program:

min
n∑
i=0

(cipi + diqi)

s:t:
∑
i∈R0

(pi − qi) +
∑
i∈R1

(pi − qi) +
∑
i∈R2

(pi − qi)−
∑
i∈R3

(pi − qi)−
∑
i∈R4

(pi − qi)−
∑
i∈R5

(pi − qi)¿D;

∑
i∈R0

(pi − qi)−
∑
i∈R1

(pi − qi) +
∑
i∈R2

(pi − qi) +
∑
i∈R3

(pi − qi)−
∑
i∈R4

(pi − qi) +
∑
i∈R5

(pi − qi)¿D1;

∑
i∈R0

(pi − qi) +
∑
i∈R1

(pi − qi)−
∑
i∈R2

(pi − qi) +
∑
i∈R3

(pi − qi) +
∑
i∈R4

(pi − qi)−
∑
i∈R5

(pi − qi)¿D2;

−pi¿wi − Pwi; i = 0; 1; : : : ; n;

−qi¿wi − wi; i = 0; 1; : : : ; n;

pi¿ 0; qi¿ 0; i = 0; 1; : : : ; n: (A.1)

The corresponding dual program is

max Dy1 + D1y2 + D2y3 +
n∑
i=0

(wi − Pwi) Pzi +
n∑
i=0

(wi − wi)zi

s:t: y1 + y2 + y3 − Pzi6 ci; ∀i∈R0;
y1 − y2 + y3 − Pzi6 ci; ∀i∈R1;
y1 + y2 − y3 − Pzi6 ci; ∀i∈R2;

− y1 + y2 + y3 − Pzi6 ci; ∀i∈R3;
− y1 − y2 + y3 − Pzi6 ci; ∀i∈R4;
− y1 + y2 − y3 − Pzi6 ci; ∀i∈R5;
− y1 − y2 − y3 − zi6di; ∀i∈R0;
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− y1 + y2 − y3 − zi6di; ∀i∈R1;
− y1 − y2 + y3 − zi6di; ∀i∈R2;
y1 − y2 − y3 − zi6di; ∀i∈R3;
y1 + y2 − y3 − zi6di; ∀i∈R4;
y1 − y2 + y3 − zi6di; ∀i∈R5;
y1¿ 0; y2¿ 0; y3¿ 0; Pzi¿ 0; zi¿ 0; i = 0; 1; : : : ; n:

Let a feasible solution (y1; y2; y3; Pz1; : : : ; Pzn; z1; : : : ; zn) of the dual problem be given. We shall prove that it is possible to
obtain a new solution (by changing y1; y2 and y3 to Py 1; Py 2 and Py 3) where Py 1¿ 0 and the new objective value are not
smaller than the old one. Then it follows from the complementary slackness conditions that there is always an optimal
solution where the 3rst inequality in the primal problem holds with equality. For our purpose it su?ces to consider the
values of Pz1; : : : ; Pzn; z1; : : : ; zn as 3xed. So, setting

ĉi := ci + Pzi; i = 0; 1; : : : ; n;

d̂i := di + zi; i = 0; 1; : : : ; n;

we just have to show that Py 1; Py 2 and Py 3 with Py 1¿ 0 is a better or equally good feasible solution (than that one initially
given) of:

max Dy1 + D1y2 + D2y3

s:t: y1 + y2 + y36min{ĉi | i∈R0} =: c̃0;
y1 − y2 + y36min{ĉi|i∈R1} =: c̃1;
y1 + y2 − y36min{ĉi|i∈R2} =: c̃2;

− y1 + y2 + y36min{ĉi|i∈R3} =: c̃3;
− y1 − y2 + y36min{ĉi|i∈R4} =: c̃4;
− y1 + y2 − y36min{ĉi|i∈R5} =: c̃5;
− y1 − y2 − y36min{d̂i|i∈R0} =: d̃0;
− y1 + y2 − y36min{d̂i|i∈R1} =: d̃1;
− y1 − y2 + y36min{d̂i|i∈R2} =: d̃2;
y1 − y2 − y36min{d̂i|i∈R3} =: d̃3;
y1 + y2 − y36min{d̂i|i∈R4} =: d̃4;
y1 − y2 + y36min{d̂i|i∈R5} =: d̃5;
y1¿ 0; y2¿ 0; y3¿ 0:

Assume that y1 = 0 (otherwise we are 3nished) and set

c̃ := min{c̃0; : : : ; c̃5; d̃0; : : : ; d̃5}:
We 3rst consider the case c̃¿ 0. In order to prove that there is a feasible solution with Py 1¿ 0 and objective value (obj)
of ( Py 1; Py 2; Py 3) ¿ objective value of (y1; y2; y3) we distinguish 4 cases. Notice that D¿D1 and D¿D2.

1. y2 = 0; y3 = 0.
• Set Py 1 := c̃; Py 2 := y2 = 0; Py 3 := y3 = 0.
• This solution is feasible.
• obj( Py 1; Py 2; Py 3) = c̃D¿ 0 = obj(y1; y2; y3).

2. y2¿ 0; y3 = 0.
• Set Py 1 := 1; Py 2 := y2 − 1; Py 3 := y3 = 0,

where 1¿ 0; 16 y2
2 .
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• This solution is feasible, since:
Py 1 + Py 2 = 1 + y2 − 1 = y1 + y2 = y2,

− Py 1 + Py 2 =−1 + y2 − 1¡y2,
− Py 1 − Py 2 =−1− y2 + 1 =−y2,
Py 1 − Py 2 = 1− y2 + 16 y2 − y2 = 06 c̃.

• obj( Py 1; Py 2; Py 3) = 1D + D1(y2 − 1) = 1(D − D1) + D1y2¿D1y2 = obj(y1; y2; y3).
3. y2 = 0; y3¿ 0
can be dealt with in a manner analogous to the previous case.

4. y2¿ 0; y3¿ 0.
(a) −y2 + y3¡min{c̃1; d̃5}.

• Set Py 1 := 1; Py 2 := y2 − 1; Py 3 := y3,
where 1¿ 0; 16 y2; 16 1

2 (min{c̃1; d̃5}+ y2 − y3); 16 (y2 + y3 + d̃3)=2.
• This solution is feasible, because:

Py 1 + Py 2 + Py 3 = 1 + y2 − 1 + y3 = y2 + y36 c̃0,
Py 1 − Py 2 + Py 3 = 1− y2 + 1 + y3 =−y2 + y3 + 216− y2 + y3 + y2 − y3 + min{c̃1; d̃5}6 c̃1,
Py 1 + Py 2 − Py 3 = 1 + y2 − 1− y3 = y2 − y36 c̃2,

− Py 1 + Py 2 + Py 3 =−1 + y2 − 1 + y3 = y2 + y3 − 216 y2 + y36 c̃3,
− Py 1 − Py 2 + Py 3 =−1− y2 + 1 + y3 =−y2 + y36 c̃4,
− Py 1 + Py 2 − Py 3 =−1 + y2 − 1− y3 = y2 − y3 − 216 y2 − y36 c̃5,
− Py 1 − Py 2 − Py 3 =−1− y2 + 1− y3 =−y2 − y36 d̃0,
− Py 1 + Py 2 − Py 3 =−1 + y2 − 1− y3 = y2 − y3 − 216 y2 − y36 d̃1,
− Py 1 − Py 2 + Py 3 =−1− y2 + 1 + y3 =−y2 + y36 d̃2,
Py 1 − Py 2 − Py 3 = 1− y2 + 1− y3 =−y2 − y3 + 216− y2 − y3 + y2 + y3 + d̃36 d̃3,
Py 1 + Py 2 − Py 3 = 1 + y2 − 1− y3 = y2 − y36 d̃4,
Py 1 − Py 2 + Py 3 = 1− y2 + 1 + y3 =−y2 + y3 + 216− y2 + y3 + y2 − y3 + min{c̃1; d̃5}6 d̃5.

• obj( Py 1; Py 2; Py 3) = 1D + D1(y2 − 1) + D2y3 = 1(D − D1) + D1y2 + D2y3¿D1y2 + D2y3 = obj(y1; y2; y3).
(b) −y2 + y3 = min{c̃1; d̃5}.

• Set Py 1 := 1; Py 2 := y2; Py 3 := y3 − 1,
where 1¿ 0; 16 y3; 16 (−y2 + y3 + c̃2)=2; 16 (−y2 + y3 + d̃4)=2; 16 (y2 + y3 + d̃3)=2.

• This solution is feasible because:
Py 1 + Py 2 + Py 3 = 1 + y2 + y3 − 1 = y2 + y36 c̃0,
Py 1 − Py 2 + Py 3 = 1− y2 + y3 − 1 =−y2 + y36 c̃1,
Py 1 + Py 2 − Py 3 = 1 + y2 − y3 + 1 = y2 − y3 + 216 y2 − y3 + y3 − y2 + c̃26 c̃2,

− Py 1 + Py 2 + Py 3 =−1 + y2 + y3 − 1 = y2 + y3 − 216 y2 + y36 c̃3,
− Py 1 − Py 2 + Py 3 =−1− y2 + y3 − 1 =−y2 + y3 − 216− y2 + y36 c̃4,
− Py 1 + Py 2 − Py 3 =−1 + y2 − y3 + 1 = y2 − y36 c̃5,
− Py 1 − Py 2 − Py 3 =−1− y2 − y3 + 1 =−y2 − y36 d̃0,
− Py 1 + Py 2 − Py 3 =−1 + y2 − y3 + 1 = y2 − y36 d̃1,
− Py 1 − Py 2 + Py 3 =−1− y2 + y3 − 1 =−y2 + y3 − 216− y2 + y36 d̃2,
Py 1 − Py 2 − Py 3 = 1− y2 − y3 + 1 =−y2 − y3 + 216− y2 − y3 + y2 + y3 + d̃36 d̃3,
Py 1 + Py 2 − Py 3 = 1 + y2 − y3 + 1 = y2 − y3 + 216 y2 − y3 − y2 + y3 + d̃46 d̃4,
Py 1 − Py 2 + Py 3 = 1− y2 + y3 − 1 =−y2 + y36 d̃5.

• obj( Py 1; Py 2; Py 3) = 1D + D1y2 + D2(y3 − 1) = 1(D − D2) + D1y2 + D2y3¿D1y2 + D2y3 = obj(y1; y2; y3).

This shows that—for c̃¿ 0—given a feasible solution of the dual problem, a better or equal good solution with Py 1¿ 0
can be achieved. By the complementary slackness conditions, there is always an optimal solution where the 3rst inequality
in the linear program holds with equality, i.e. a1 + a2 + a3 + a4 = D.
The case c̃ = 0 can be reduced to the positive one in the following way. The inverse 1-median problem consists in

solving a linear program of the form:

min cTx

s:t: Ax6 b

x¿ 0:

(A.2)
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Consider a perturbed problem of (A.2):

min (c + 1)Tx

s:t: Ax6 b

x¿ 0; (A.3)

with 1¿ 0. In [6] it is shown that the optimal solution of the dual problem of (A.3) converges to an optimal solution of
the dual problem of (A.2) as 1 → 0. Then it follows from strong duality that the optimal solution of (A.3) converges to
an optimal solution of (A.2), too. Thus, there is an optimal solution with a1 +a2 +a3 +a4 =D also in the case c̃=0.
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