97,614 research outputs found

    Strongly Interacting p-wave Fermi Gas in Two-Dimensions: Universal Relations and Breathing Mode

    Get PDF
    The contact is an important concept that characterizes the universal properties of a strongly interacting quantum gas. It appears in both thermodynamic (energy, pressure, etc.) and dynamic quantities (radio-frequency and Bragg spectroscopies, etc.) of the system. Very recently, the concept of contact has been extended to higher partial waves, in particular, the p-wave contacts have been experimentally probed in recent experiment. So far discussions on p-wave contacts have been limited to three-dimensions. In this paper, we generalize the p-wave contacts to two-dimensions and derive a series of universal relations, including the adiabatic relations, high momentum distribution, virial theorem and pressure relation. At high temperature and low density limit, we calculated the p-wave contacts explicitly using virial expansion. A formula which directly connects the shift of the breathing mode frequency and the p-wave contacts are given in a harmonically trapped system. Finally, we also derive the relationships between interaction parameters in three and two dimensional Fermi gas and discuss possible experimental realization of two dimensional Fermi gas with p-wave interactions.Comment: 12 pages,4 figur

    Structured Matrix Completion with Applications to Genomic Data Integration

    Get PDF
    Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.Comment: Accepted for publication in Journal of the American Statistical Associatio

    Tight Upper Bounds for Streett and Parity Complementation

    Get PDF
    Complementation of finite automata on infinite words is not only a fundamental problem in automata theory, but also serves as a cornerstone for solving numerous decision problems in mathematical logic, model-checking, program analysis and verification. For Streett complementation, a significant gap exists between the current lower bound 2Ω(nlgnk)2^{\Omega(n\lg nk)} and upper bound 2O(nklgnk)2^{O(nk\lg nk)}, where nn is the state size, kk is the number of Streett pairs, and kk can be as large as 2n2^{n}. Determining the complexity of Streett complementation has been an open question since the late '80s. In this paper show a complementation construction with upper bound 2O(nlgn+nklgk)2^{O(n \lg n+nk \lg k)} for k=O(n)k = O(n) and 2O(n2lgn)2^{O(n^{2} \lg n)} for k=ω(n)k = \omega(n), which matches well the lower bound obtained in \cite{CZ11a}. We also obtain a tight upper bound 2O(nlgn)2^{O(n \lg n)} for parity complementation.Comment: Corrected typos. 23 pages, 3 figures. To appear in the 20th Conference on Computer Science Logic (CSL 2011

    Recovery-Based Error Estimators for Diffusion Problems: Explicit Formulas

    Full text link
    We introduced and analyzed robust recovery-based a posteriori error estimators for various lower order finite element approximations to interface problems in [9, 10], where the recoveries of the flux and/or gradient are implicit (i.e., requiring solutions of global problems with mass matrices). In this paper, we develop fully explicit recovery-based error estimators for lower order conforming, mixed, and non- conforming finite element approximations to diffusion problems with full coefficient tensor. When the diffusion coefficient is piecewise constant scalar and its distribution is local quasi-monotone, it is shown theoretically that the estimators developed in this paper are robust with respect to the size of jumps. Numerical experiments are also performed to support the theoretical results
    corecore