6 research outputs found

    Modelling community productivity, species abundance and richness in a naturalised pasture ecosystem : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University, Palmerston North, New Zealand

    Get PDF
    This study focuses on modelling community productivity, species abundance and richness, and the impact of climate change and alternative phosphorous fertiliser application strategies on pasture productivity by integration of decision tree and regression modelling approaches with a geographical information system (GIS) in a naturalised hill-pasture ecosystem in the North Island, New Zealand, using data derived from research conducted on hill-pastures over the last several decades. The results indicated that the decision tree models had a high predictive capability and clearly revealed the relative importance of environmental and management factors in influencing community productivity, species abundance and richness. Spring rainfall was the most significant factor influencing annual pasture productivity in the North Island, while hill slope was the most significant factor influencing spring and winter pasture productivity. Annual P fertiliser input and autumn rainfall were the most significant factors influencing summer and autumn pasture productivity, respectively. For species functional group abundance, soil Olsen P was the most significant factor influencing the relative abundance of low fertility tolerance grasses (LFTG) and moss, while soil bulk density, slope and annual P fertiliser input were the most significant factors influencing the relative abundance of legume, high fertility response grasses (HFRG) and flatweeds, respectively. Legume abundance was the most significant factor influencing species richness in the hill-pasture. Species richness increased with an increase in legume abundance and showed a tendency for a hump-shaped response. Grazing animal species also had a significant effect on species richness; pasture grazed by sheep had more species than pasture grazed by cattle. Climate change scenarios of temperature increases of 1-2 °C and rainfall changes of -20% to +20% would have a great impact (-46.2% to +51.9%) on pasture production in the North Island. Pasture in areas with relatively low rainfall had a higher response to increased P fertiliser input than pastures in areas with a relatively high rainfall. In conclusion, the integration of a GIS with decision tree and regression models in this study provided an approach for effective predictive modelling of community productivity, species abundance and richness in the hill-pasture. This modelling approach can also be used as a tool in pasture management such as in assessing the impact of climate change and alternative fertiliser management on pasture production

    Assessing the impact of historical and future climate change on potential natural vegetation types and net primary productivity in Australian grazing lands

    No full text
    The study investigated the impact of historical and future climate changes on potential natural vegetation (PNV) types and net primary productivity (NPP) in Australia, using the Comprehensive and Sequential Classification System model and the Miami model coupled with climate of the 1931–70 and 1971–2010 periods and the projected climate in 2050. Twenty-eight vegetation classes were classified based on the key climate indicators with four of them being the major vegetation classes corresponding to Australian rangelands and accounting for 75% of total land area. There was a substantial shift in areas of vegetation classes from the 1931–70 period to the 1971–2010 period due to the increased rainfall over large areas across Australia. The modelling projected a range of changes in vegetation classes for 2050 depending on the climate-change scenario used. Many vegetation classes with more intense land use (e.g. steppe and forest) were projected to decrease in 2050, which may have significant impact on the grazing industry and biodiversity conservation. By 2050, NPP was projected to increase in central and northern Australia and to decrease in southern and eastern coastal areas and was projected to be higher on average than that of the 1931–70 period. The vegetation classes approximately corresponding to Australian rangelands mostly had increased NPP projections compared with the 1931–70 period. Although actual response will partially depend on human management activities, fire and extreme events, the projected increase in average NPP in 2050 indicates that Australian vegetation, particularly the rangeland vegetation, will likely be a net carbon sink rather than a carbon source by 2050, with the exception of a ‘warm-dry’ scenario

    Native pastures and beef cattle show a spatially variable response to a changing climate in Queensland, Australia

    No full text
    Queensland's rangelands are an important source for Australia's pastoral food production. However, they are subject to significant climate variability and will be under increasing pressure as the climate changes, potentially leading to loss of productivity. Pasture growth fluctuates greatly due to rainfall variability, which unfortunately is the climate variable with the largest uncertainties in future projections for northern and eastern Australia. This sensitivity study examines the effect of climate change and its interaction with soil fertility and trees on pasture and livestock production in Queensland. Nine climate change sensitivities were tested in various combinations; an increase in air temperatures by a median projected value of +3 °C, rainfall changes of -20 %, -10 % and +10 % and an increase of carbon dioxide concentrations to 700 ppm. The GRASP model was used to assess the responses of pasture growth, pasture quality and cattle liveweight change per head. The most arid areas in western and south-western Queensland were the most sensitive to changes in rainfall. In contrast, the tropical north was the most resilient region. Southern and south-eastern Queensland benefitted from higher air temperatures producing greater pasture growth, quality and liveweight gain per head by extending the growing season and reducing frost during the winter months. The presence of trees competing for water and nitrogen increased the sensitivity of pasture to climate change, especially at higher carbon dioxide levels and lower rainfall. Increased carbon dioxide enhanced pasture growth and mitigated rainfall reductions by improving the water use efficiency of the plants. Thus, a warmer climate may create new opportunities in the south and south-east, but a warmer and drier climate in the western regions of Queensland is likely to reduce pasture and livestock production
    corecore