6,367 research outputs found

    Remove Cosine Window from Correlation Filter-based Visual Trackers: When and How

    Full text link
    Correlation filters (CFs) have been continuously advancing the state-of-the-art tracking performance and have been extensively studied in the recent few years. Most of the existing CF trackers adopt a cosine window to spatially reweight base image to alleviate boundary discontinuity. However, cosine window emphasizes more on the central region of base image and has the risk of contaminating negative training samples during model learning. On the other hand, spatial regularization deployed in many recent CF trackers plays a similar role as cosine window by enforcing spatial penalty on CF coefficients. Therefore, we in this paper investigate the feasibility to remove cosine window from CF trackers with spatial regularization. When simply removing cosine window, CF with spatial regularization still suffers from small degree of boundary discontinuity. To tackle this issue, binary and Gaussian shaped mask functions are further introduced for eliminating boundary discontinuity while reweighting the estimation error of each training sample, and can be incorporated with multiple CF trackers with spatial regularization. In comparison to the counterparts with cosine window, our methods are effective in handling boundary discontinuity and sample contamination, thereby benefiting tracking performance. Extensive experiments on three benchmarks show that our methods perform favorably against the state-of-the-art trackers using either handcrafted or deep CNN features. The code is publicly available at https://github.com/lifeng9472/Removing_cosine_window_from_CF_trackers.Comment: 13 pages, 7 figures, submitted to IEEE Transactions on Image Processin

    Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century.

    Get PDF
    Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM2.5) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (<100 nm), although they have the highest number counts, surface area and organic chemical content, are often overlooked due to insufficient monitoring and risk assessment. Yet, ample studies have demonstrated that ambient ultrafine particles have higher toxic potential compared with PM2.5. In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future

    Excited-state quantum phase transitions in the interacting boson model: Spectral characteristics of 0+ states and effective order parameter

    Get PDF
    The spectral characteristics of the Lπ=0+ excited states in the interacting boson model are systematically investigated. It is found that various types of excited-state quantum phase transitions may widely occur in the model as functions of the excitation energy, which indicates that the phase diagram of the interacting boson model can be dynamically extended along the direction of the excitation energy. It has also been justified that the d-boson occupation probability ρ(E) is qualified to be taken as the effective order parameter to identify these excited-state quantum phase transitions. In addition, the underlying relation between the excite-state quantum phase transition and the chaotic dynamics is also stated
    corecore