225,010 research outputs found

    Periodic subvarieties of a projective variety under the action of a maximal rank abelian group of positive entropy

    No full text
    We determine positive-dimensional G-periodic proper subvarieties of an n-dimensional normal projective variety X under the action of an abelian group G of maximal rank n-1 and of positive entropy. The motivation of the paper is to understand the obstruction for X to be G-equivariant birational to the quotient variety of an abelian variety modulo the action of a finite group.Comment: Asian Journal of Mathematics (to appear), Special issue on the occasion of Prof N. Mok's 60th birthda

    Inverse Statistical Mechanics: Probing the Limitations of Isotropic Pair Potentials to Produce Ground-State Structural Extremes

    Full text link
    Inverse statistical-mechanical methods have recently been employed to design optimized short-ranged radial (isotropic) pair potentials that robustly produce novel targeted classical ground-state many-particle configurations. The target structures considered in those studies were low-coordinated crystals with a high degree of symmetry. In this paper, we further test the fundamental limitations of radial pair potentials by targeting crystal structures with appreciably less symmetry, including those in which the particles have different local structural environments. These challenging target configurations demanded that we modify previous inverse optimization techniques. Using this modified optimization technique, we have designed short-ranged radial pair potentials that stabilize the two-dimensional kagome crystal, the rectangular kagome crystal, and rectangular lattices, as well as the three-dimensional structure of CaF2_2 crystal inhabited by a single particle species. We verify our results by cooling liquid configurations to absolute zero temperature via simulated annealing and ensuring that such states have stable phonon spectra. Except for the rectangular kagome structure, all of the target structures can be stabilized with monotonic repulsive potentials. Our work demonstrates that single-component systems with short-ranged radial pair potentials can counterintuitively self-assemble into crystal ground states with low symmetry and different local structural environments. Finally, we present general principles that offer guidance in determining whether certain target structures can be achieved as ground states by radial pair potentials

    Chiral geometry and rotational structure for 130^{130}Cs in the projected shell model

    Get PDF
    The projected shell model with configuration mixing for nuclear chirality is developed and applied to the observed rotational bands in the chiral nucleus 130^{130}Cs. For the chiral bands, the energy spectra and electromagnetic transition probabilities are well reproduced. The chiral geometry illustrated in the K plotK~plot and the azithumal plotazithumal~plot is confirmed to be stable against the configuration mixing. The other rotational bands are also described in the same framework
    • …
    corecore