140 research outputs found

    Tropical Channel Model

    Get PDF

    Impact of Aerosols on Convective Clouds and Precipitation

    Get PDF
    Aerosols are a critical factor in the atmospheric hydrological cycle and radiation budget. As a major reason for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosol effects on clouds could further extend to precipitation, both through the formation of cloud particles and by exerting persistent radiative forcing on the climate system that disturbs dynamics. However, the various mechanisms behind these effects, in particular the ones connected to precipitation, are not yet well understood. The atmospheric and climate communities have long been working to gain a better grasp of these critical effects and hence to reduce the significant uncertainties in climate prediction resulting from such a lack of adequate knowledge. The central theme of this paper is to review past efforts and summarize our current understanding of the effect of aerosols on precipitation processes from theoretical analysis of microphysics, observational evidence, and a range of numerical model simulations. In addition, the discrepancy between results simulated by models, as well as that between simulations and observations will be presented. Specifically, this paper will address the following topics: (1) fundamental theories of aerosol effects on microphysics and precipitation processes, (2) observational evidence of the effect of aerosols on precipitation processes, (3) signatures of the aerosol impact on precipitation from large-scale analyses, (4) results from cloud-resolving model simulations, and (5) results from large-scale numerical model simulations. Finally, several future research directions on aerosol - precipitation interactions are suggested

    Uncertainty quanti fi cation of PWR spent fuel due to nuclear data and modeling parameters

    Get PDF
    Uncertainties are calculated for pressurized water reactor (PWR) spent nuclear fuel (SNF) characteristics. The deterministic code STREAM is currently being used as an SNF analysis tool to obtain isotopic in-ventory, radioactivity, decay heat, neutron and gamma source strengths. The SNF analysis capability of STREAM was recently validated. However, the uncertainty analysis is yet to be conducted. To estimate the uncertainty due to nuclear data, STREAM is used to perturb nuclear cross section (XS) and resonance integral (RI) libraries produced by NJOY99. The perturbation of XS and RI involves the stochastic sam-pling of ENDF/B-VII.1 covariance data. To estimate the uncertainty due to modeling parameters (fuel design and irradiation history), surrogate models are built based on polynomial chaos expansion (PCE) and variance-based sensitivity indices (i.e., Sobol & rsquo; indices) are employed to perform global sensitivity analysis (GSA). The calculation results indicate that uncertainty of SNF due to modeling parameters are also very important and as a result can contribute significantly to the difference of uncertainties due to nuclear data and modeling parameters. In addition, the surrogate model offers a computationally effi-cient approach with significantly reduced computation time, to accurately evaluate uncertainties of SNF integral characteristics. (c) 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Atmospheric convection and air-sea interactions over the tropical oceans: scientific progress, challenges, and opportunities

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hagos, S., Foltz, G. R., Zhang, C., Thompson, E., Seo, H., Chen, S., Capotondi, A., Reed, K. A., DeMott, C., & Protat, A. Atmospheric convection and air-sea interactions over the tropical oceans: scientific progress, challenges, and opportunities. Bulletin of the American Meteorological Society, 101(3), (2020): E253-E258, doi:10.1175/BAMS-D-19-0261.1.Over the past 30 years, the scientific community has made considerable progress in understanding and predicting tropical convection and air–sea interactions, thanks to sustained investments in extensive in situ and remote sensing observations, targeted field experiments, advances in numerical modeling, and vastly improved computational resources and observing technologies. Those investments would not have been fruitful as isolated advancements without the collaborative effort of the atmospheric convection and air–sea interaction research communities. In this spirit, a U.S.- and International CLIVAR–sponsored workshop on “Atmospheric convection and air–sea interactions over the tropical oceans” was held in the spring of 2019 in Boulder, Colorado. The 90 participants were observational and modeling experts from the atmospheric convection and air–sea interactions communities with varying degrees of experience, from early-career researchers and students to senior scientists. The presentations and discussions covered processes over the broad range of spatiotemporal scales (Fig. 1).The workshop was sponsored by the United States and International CLIVAR. Funding was provided by the U.S. Department of Energy, Office of Naval Research, NOAA, NSF, and the World Climate Research Programme. We thank Mike Patterson, Jennie Zhu, and Jeff Becker from the U.S. CLIVAR Project Office for coordinating the workshop

    Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    Get PDF
    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM

    United States contributions to the Second International Indian Ocean Expedition (US IIOE-2)

    Get PDF
    From the Preface: The purpose of this document is to motivate and coordinate U.S. participation in the Second International Indian Ocean Expedition (IIOE-2) by outlining a core set of research priorities that will accelerate our understanding of geologic, oceanic, and atmospheric processes and their interactions in the Indian Ocean. These research priorities have been developed by the U.S. IIOE-2 Steering Committee based on the outcomes of an interdisciplinary Indian Ocean science workshop held at the Scripps Institution of Oceanography on September 11-13, 2017. The workshop was attended by 70 scientists with expertise spanning climate, atmospheric sciences, and multiple sub-disciplines of oceanography. Workshop participants were largely drawn from U.S. academic institutions and government agencies, with a few experts invited from India, China, and France to provide a broader perspective on international programs and activities and opportunities for collaboration. These research priorities also build upon the previously developed International IIOE-2 Science Plan and Implementation Strategy. Outcomes from the workshop are condensed into five scientific themes: Upwelling, inter-ocean exchanges, monsoon dynamics, inter-basin contrasts, marine geology and the deep ocean. Each theme is identified with priority questions that the U.S. research community would like to address and the measurements that need to be made in the Indian Ocean to address them.We thank the following organizations and programs for financial contributions, support and endorsement: the U.S. National Oceanic and Atmospheric Administration; the U.S. Ocean Carbon and Biogeochemistry program funded by the National Science Foundation and the National Aeronautics and Space Administration; the NASA Physical Oceanography Program; Scripps Institution of Oceanography; and the Indo-US Science and Technology Forum
    corecore