5,568 research outputs found

    Optical generation of hybrid entangled state via entangling single-photon-added coherent state

    Full text link
    We propose a feasible scheme to realize the optical entanglement of single-photon-added coherent state (SPACS) and show that, besides the Sanders entangled coherent state, the entangled SPACS also leads to new forms of hybrid entanglement of quantum Fock state and classical coherent state. We probe the essential difference of two types of hybrid entangled state (HES). This HES provides a novel link between the discrete- and the continuous-variable entanglement in a natural way.Comment: 6 pages, 2 figure

    The stability of transgene expression and effect of DNA methylation on post transcriptional gene silencing (PTGS) in birch

    Get PDF
    In this paper, we selected transgenic birch (Betula platyphylla Suk) plants, which included nonsilencing plants, transcriptional silence plants including TP96, TP74, TP73 and the post-transcriptional silence ones (TP67 and TP72). The transcription of the bgt gene in different tissues and organs were significantly different. The transcriptional level of bgt gene in the different tissues and organs was in the following order: leaf > female flower and male flower > branch bark > phloem > root. The transgenic lines were monitored for foreign gene expression for a long-term period of 8 years during their continuous growth under field conditions. GUS protein expression was not reactivated in the transgene silencing lines TP72 and TP67 when cultured in field conditions for long-term period. Meanwhile, no cases of gene silencing were observed again during the study period in the field conditions. Our results suggest that transgene expression in transgenic birch plants appears to be stable under field conditions. The frequencies of methylated cytosines in the code regions of gus gene was studied. Relation of transgene expression and DNA methylation was analysed. The data of restriction enzyme digestion (HpaII and MspI) indicated that DNA methylation resulted in post transcriptional gene silencing (PTGS) in transgenic birch.Key words: Transgenic birch, DNA methylation, gene silencing

    Leveraging Identity-by-Descent for Accurate Genotype Inference in Family Sequencing Data

    Get PDF
    Sequencing family DNA samples provides an attractive alternative to population based designs to identify rare variants associated with human disease due to the enrichment of causal variants in pedigrees. Previous studies showed that genotype calling accuracy can be improved by modeling family relatedness compared to standard calling algorithms. Current family-based variant calling methods use sequencing data on single variants and ignore the identity-by-descent (IBD) sharing along the genome. In this study we describe a new computational framework to accurately estimate the IBD sharing from the sequencing data, and to utilize the inferred IBD among family members to jointly call genotypes in pedigrees. Through simulations and application to real data, we showed that IBD can be reliably estimated across the genome, even at very low coverage (e.g. 2X), and genotype accuracy can be dramatically improved. Moreover, the improvement is more pronounced for variants with low frequencies, especially at low to intermediate coverage (e.g. 10X to 20X), making our approach effective in studying rare variants in cost-effective whole genome sequencing in pedigrees. We hope that our tool is useful to the research community for identifying rare variants for human disease through family-based sequencing

    Two-Speed DCT Electric Powertrain Shifting Control and Rig Testing

    Full text link
    Dual clutch transmissions (DCTs) are recognized as being suitable for electric drive applications as they can drive with high efficiency and achieve good shifting comfort. A two-speed DCT electric drivetrain is described in this paper, comprised of only two gear pairs and a final drive gear in the two-speed gearbox. The fundamental shifting control algorithm is provided. On the testing rig of University of Technology, Sydney (UTS) powertrain lab, shifting controls and some driving cycle controls were realized. The results demonstrated that the control algorithm functioned well both in transient shifting control process and in the driving cycle conditions

    The Effects of Ultra-high Pressure Treatment on the Phenolic Composition of Red Wine

    Get PDF
    Wine is usually aged in oak barrels. In this study, young red wines were treated with ultra-high pressure(UHP) to stimulate the ageing process. Changes in phenolic acids, flavan-3-ols and proanthocyanidinswere determined by reverse-phase high pressure liquid chromatography (RP-HPLC). The concentrationof phenolic acids increased, while the levels of flavan-3-ols decreased. The content and structure ofproanthocyanidins also changed and the tendency was similar to that of natural ageing

    An independent test of the photometric selection of white dwarf candidates using LAMOST DR3

    Full text link
    In Gentile Fusillo et al. (2015) we developed a selection method for white dwarf candidates which makes use of photometry, colours and proper motions to calculate a probability of being a white dwarf (Pwd). The application of our method to the Sloan Digital Sky Survey (SDSS) data release 10 resulted in nearly 66,000 photometrically selected objects with a derived Pwd, approximately 21000 of which are high confidence white dwarf candidates. Here we present an independent test of our selection method based on a sample of spectroscopically confirmed white dwarfs from the LAMOST (Large Sky Area Multi-Fiber Spectroscopic Telescope) survey. We do this by cross matching all our ∼\sim66,000 SDSS photometric white dwarf candidates with the over 4 million spectra available in the third data release of LAMOST. This results in 1673 white dwarf candidates with no previous SDSS spectroscopy, but with available LAMOST spectra. Among these objects we identify 309 genuine white dwarfs. We find that our Pwd can efficiently discriminate between confirmed LAMOST white dwarfs and contaminants. Our white dwarf candidate selection method can be applied to any multi-band photometric survey and in this work we conclusively confirm its reliability in selecting white dwarfs without recourse to spectroscopy. We also discuss the spectroscopic completeness of white dwarfs in LAMOST, as well as deriving effective temperatures, surface gravities and masses for the hydrogen-rich atmosphere white dwarfs in the newly identified LAMOST sample.Comment: 10 pages, 7 figures. Accepted for publication in MNRAS. The full catalogue presented in table 4 is available at http://www2.warwick.ac.uk/fac/sci/physics/research/astro/catalogues/SDSS_WD_candidates_with_LAMOST_spectra.cs

    Gear shift schedule design for multi-speed pure electric vehicles

    Full text link
    © IMechE 2014. As pure electric vehicles are considered to be a major growth trend in the automotive industry, research into and development of efficient electric powertrain systems and related control technologies have become popular research topics. The growing importance and use of multi-speed transmissions in these vehicles make shift schedule design and research a crucial aspect of the powertrain systems design of pure electric vehicles. This paper provides a gear shift schedule calculation method for pure electric vehicles, which includes a dynamic shift schedule and an economic shift schedule calculation method, demonstrating how to optimize the shift points and to produce the upshift and downshift lines based on the motor efficiency map. Through the establishment of a pure electric vehicle model, simulation results show that a properly designed shift schedule can improve the working region of the motor and can refine the dynamic performance and the economic performance of the vehicle. Finally, rig testing results are demonstrated to be comparable with simulations and indicate the correctness of the method

    Bounds of Efficiency at Maximum Power for Normal-, Sub- and Super-Dissipative Carnot-Like Heat Engines

    Full text link
    The Carnot-like heat engines are classified into three types (normal-, sub- and super-dissipative) according to relations between the minimum irreversible entropy production in the "isothermal" processes and the time for completing those processes. The efficiencies at maximum power of normal-, sub- and super-dissipative Carnot-like heat engines are proved to be bounded between ηC/2\eta_C/2 and ηC/(2−ηC)\eta_C/(2-\eta_C), ηC/2\eta_C /2 and ηC\eta_C, 0 and ηC/(2−ηC)\eta_C/(2-\eta_C), respectively. These bounds are also shared by linear, sub- and super-linear irreversible Carnot-like engines [Tu and Wang, Europhys. Lett. 98, 40001 (2012)] although the dissipative engines and the irreversible ones are inequivalent to each other.Comment: 1 figur

    Comparison of the gene expression profiles of human fetal cortical astrocytes with pluripotent stem cell derived neural stem cells identifies human astrocyte markers and signaling pathways and transcription factors active in human astrocytes

    Get PDF
    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression analysis of human fetal astrocytes to identify genes and signaling pathways that are important for astrocyte development and maintenance. Our analysis confirmed that the fetal astrocytes express high levels of the core astrocyte marker GFAP and the transcription factors from the NFI family which have been shown to play important roles in astrocyte development. A group of novel markers were identified that distinguish fetal astrocytes from pluripotent stem cell-derived neural stem cells (NSCs) and NSC-derived neurons. As in murine astrocytes, the Notch signaling pathway appears to be particularly important for cell fate decisions between the astrocyte and neuronal lineages in human astrocytes. These findings unveil the repertoire of genes expressed in human astrocytes and serve as a basis for further studies to better understand astrocyte biology, especially as it relates to disease.published_or_final_versio
    • …
    corecore