132 research outputs found

    Seismic noise interferometry reveals transverse drainage configuration beneath the surging Bering Glacier

    Get PDF
    Subglacial drainage systems are known to critically control ice flows, but their spatial configuration and temporal evolution are poorly constrained due to inaccessibility. Here we report a 12‐year‐long monitoring of the drainage underneath Bering Glacier, Alaska, by correlating ambient noise recorded at two seismic stations on the sides of the glacier. We find that the seismic surface waves traveling across Bering Glacier slowed down by 1–2% during its latest 2008–2011 surge, likely due to the switch of the subglacial drainage from a channelized system to a distributed system. In contrast to current models, the relative amplitude of velocity reductions for Rayleigh and Love waves requires the distributed drainage to be highly anisotropic and aligned perpendicular to the ice flow direction. We infer that the subglacial water flow is mainly through a network of transverse basal crevasses during surges and thus can sustain the high water pressure and ice flow speed

    Recurring large deep earthquakes in Hindu Kush driven by a sinking slab

    Get PDF
    Hindu Kush subduction zone produces large intermediate-depth earthquakes within a small volume every 10–15 years. Here we study the last three M ≥ 7 events within the cluster and find complex and diverse rupture processes. However, their main subevents appear to recur on the same fault patch, dipping 70° to the south. This recurrence requires an average of 9.6 cm/yr slip rate on the patch, much higher than the ~1 cm/yr surface convergence rate measured geodetically. The high slip rate is likely caused by significant slab internal deformation, such as localized slab stretching/necking. We infer that the Hindu Kush subducted slab below 210 km is sinking through the mantle at a vertical rate of 10 cm/yr

    An array-based receiver function deconvolution method: methodology and application

    Get PDF
    Receiver functions (RFs) estimated on dense arrays have been widely used for the study of Earth structures across multiple scales. However, due to the ill-posedness of deconvolution, RF estimation faces challenges such as non-uniqueness and data overfitting. In this paper, we present an array-based RF deconvolution method in the context of emerging dense arrays. We propose to exploit the wavefield coherency along a dense array by joint inversions of waveforms from multiple events and stations for RFs with a minimum number of phases required by data. The new method can effectively reduce the instability of deconvolution and help retrieve RFs with higher fidelity. We test the algorithm on synthetic waveforms and show that it produces RFs with higher interpretability than those by the conventional RF estimation practice. Then we apply the method to real data from the 2016 Incorporated Research Institutions for Seismology (IRIS) community wavefield experiment in Oklahoma and are able to generate high-resolution RF profiles with only three teleseismic earthquakes recorded by the temporary deployment. This new method should help enhance RF images derived from short-term high-density seismic profiles

    Moving from 1-D to 3-D velocity model: automated waveform-based earthquake moment tensor inversion in the Los Angeles region

    Get PDF
    Earthquake focal mechanisms put primary control on the distribution of ground motion, and also bear on the stress state of the crust. Most routine focal mechanism catalogues still use 1-D velocity models in inversions, which may introduce large uncertainties in regions with strong lateral velocity heterogeneities. In this study, we develop an automated waveform-based inversion approach to determine the moment tensors of small-to-medium-sized earthquakes using 3-D velocity models. We apply our approach in the Los Angeles region to produce a new moment tensor catalogue with a completeness of M_L ≥ 3.5. The inversions using the Southern California Earthquake Center Community Velocity Model (3D CVM-S4.26) significantly reduces the moment tensor uncertainties, mainly owing to the accuracy of the 3-D velocity model in predicting both the phases and the amplitudes of the observed seismograms. By comparing the full moment tensor solutions obtained using 1-D and 3-D velocity models, we show that the percentages of non-double-couple components decrease dramatically with the usage of 3-D velocity model, suggesting that large fractions of non-double-couple components from 1-D inversions are artifacts caused by unmodelled 3-D velocity structures. The new catalogue also features more accurate focal depths and moment magnitudes. Our highly accurate, efficient and automatic inversion approach can be expanded in other regions, and can be easily implemented in near real-time system

    An array-based receiver function deconvolution method: methodology and application

    Get PDF
    Receiver functions (RFs) estimated on dense arrays have been widely used for the study of Earth structures across multiple scales. However, due to the ill-posedness of deconvolution, RF estimation faces challenges such as non-uniqueness and data overfitting. In this paper, we present an array-based RF deconvolution method in the context of emerging dense arrays. We propose to exploit the wavefield coherency along a dense array by joint inversions of waveforms from multiple events and stations for RFs with a minimum number of phases required by data. The new method can effectively reduce the instability of deconvolution and help retrieve RFs with higher fidelity. We test the algorithm on synthetic waveforms and show that it produces RFs with higher interpretability than those by the conventional RF estimation practice. Then we apply the method to real data from the 2016 Incorporated Research Institutions for Seismology (IRIS) community wavefield experiment in Oklahoma and are able to generate high-resolution RF profiles with only three teleseismic earthquakes recorded by the temporary deployment. This new method should help enhance RF images derived from short-term high-density seismic profiles

    Possible seasonality in large deep-focus earthquakes

    Get PDF
    Large deep-focus earthquakes (magnitude > 7.0, depth > 500 km) have exhibited strong seasonality in their occurrence times since the beginning of global earthquake catalogs. Of 60 such events from 1900 to the present, 42 have occurred in the middle half of each year. The seasonality appears strongest in the northwest Pacific subduction zones and weakest in the Tonga region. Taken at face value, the surplus of northern hemisphere summer events is statistically significant, but due to the ex post facto hypothesis testing, the absence of seasonality in smaller deep earthquakes, and the lack of a known physical triggering mechanism, we cannot rule out that the observed seasonality is just random chance. However, we can make a testable prediction of seasonality in future large deep-focus earthquakes, which, given likely earthquake occurrence rates, should be verified or falsified within a few decades. If confirmed, deep earthquake seasonality would challenge our current understanding of deep earthquakes

    Seismic noise interferometry reveals transverse drainage configuration beneath the surging Bering Glacier

    Get PDF
    Subglacial drainage systems are known to critically control ice flows, but their spatial configuration and temporal evolution are poorly constrained due to inaccessibility. Here we report a 12‐year‐long monitoring of the drainage underneath Bering Glacier, Alaska, by correlating ambient noise recorded at two seismic stations on the sides of the glacier. We find that the seismic surface waves traveling across Bering Glacier slowed down by 1–2% during its latest 2008–2011 surge, likely due to the switch of the subglacial drainage from a channelized system to a distributed system. In contrast to current models, the relative amplitude of velocity reductions for Rayleigh and Love waves requires the distributed drainage to be highly anisotropic and aligned perpendicular to the ice flow direction. We infer that the subglacial water flow is mainly through a network of transverse basal crevasses during surges and thus can sustain the high water pressure and ice flow speed

    Trench motion-controlled slab morphology and stress variations: Implications for the isolated 2015 Bonin Islands deep earthquake

    Get PDF
    The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu-Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurrence of isolated earthquakes. Models expand on previous suggestions that observed slab morphology variations along the Izu-Bonin subduction zone, exhibited as shallow slab dip angles in the north and steeper dip angles in the south, are mainly due to variations in the rate of trench retreat from the north (where it is fast) to the south (where it is slow). Geodynamic models consistent with the regional plate tectonics, including oceanic plate age, plate convergence rate, and trench motion history, reproduce the seismologically observed principal stress direction and slab morphology. We suggest that the isolated ~680 km deep, 30 May 2015 M_w 7.9 Bonin Islands earthquake, which lies east of the well-defined Benioff zone and has its principal compressional stress direction oriented toward the tip of the previously defined Benioff zone, can be explained by Pacific slab buckling in response to the slow trench retreat
    corecore