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S U M M A R Y
Receiver functions (RFs) estimated on dense arrays have been widely used for the study of
Earth structures across multiple scales. However, due to the ill-posedness of deconvolution,
RF estimation faces challenges such as non-uniqueness and data overfitting. In this paper, we
present an array-based RF deconvolution method in the context of emerging dense arrays.
We propose to exploit the wavefield coherency along a dense array by joint inversions of
waveforms from multiple events and stations for RFs with a minimum number of phases
required by data. The new method can effectively reduce the instability of deconvolution
and help retrieve RFs with higher fidelity. We test the algorithm on synthetic waveforms
and show that it produces RFs with higher interpretability than those by the conventional
RF estimation practice. Then we apply the method to real data from the 2016 Incorporated
Research Institutions for Seismology (IRIS) community wavefield experiment in Oklahoma
and are able to generate high-resolution RF profiles with only three teleseismic earthquakes
recorded by the temporary deployment. This new method should help enhance RF images
derived from short-term high-density seismic profiles.

Key words: Joint inversion; Time-series analysis; Computational seismology.

1 I N T RO D U C T I O N

Receiver function (RF) has been an indispensable tool in global
seismology. The classical teleseismic P-wave RF isolates receiver-
side structures from source and path effects by deconvolving ver-
tical component (Z) from radial component (R) (e.g. Vinnik 1977;
Langston 1979; Ammon 1991). RF has been applied routinely to
study crustal and upper mantle structures, such as basins, Moho and
subduction zones (e.g. Zhu & Kanamori 2000; Nábelek et al. 2009;
Nikulin et al. 2009; Levander et al. 2011; Ma & Clayton 2016).
The classical RF has also been generalized to longer periods and
S waves, to study the lithosphere–asthenosphere–boundary (LAB)
and the mantle transition zones (e.g. Fischer et al. 2010; Miller
& Piana Agostinetti 2012; Tauzin et al. 2013). In particular, wide
applications of RF on dense arrays have pushed Earth structure im-
ages to unprecedented resolutions (e.g. IRIS Portable Array Seismic
Studies of the Continental Lithosphere (PASSCAL) experiments in
United States, Tibet and South America, and the EarthScope Trans-
portable and Flexible arrays; Eagar et al. 2011; Kumar et al. 2012;
Levander & Miller 2012; Shen et al. 2013; Tauzin et al. 2013;
Schulte-Pelkum & Mahan 2014).

In this paper, we focus on RF estimation along a dense profile
of stations, a common layout of seismic experiments to get a cross-
section of target areas (e.g. Nábelek et al. 2009; Kim et al. 2010; Ma
& Clayton 2016). The conventional practice is that RFs are estimated
independently at individual stations and are then combined to form a

2-D RF profile. The coherent phases on the profile are then tracked
and interpreted as structural discontinuities. To improve the RF
resolution, it is common to stack individual RFs obtained from
many events that share similar receiver-side structural responses.
In RF imaging, the next step is to relate RFs to physical structures
through migrating or inverting RFs for reflectivity and velocity
models. (e.g. Ammon et al. 1990; Dueker & Sheehan 1997; Zhu
& Kanamori 2000; Gilbert et al. 2003; Xu et al. 2013). The new
method we present here is solely on RF estimation using arrays, not
on deriving reflectivity or velocity models from the RFs.

Although dense-array RFs are widely used to reveal Earth
discontinuities, it is well known that obtaining high-resolution
RF profiles is far from being trivial and sometimes challeng-
ing. This reason is often related to the ill-posedness of deconvo-
lution, or more specifically non-uniqueness and data overfitting.
As a result, RFs often include spurious phases and are difficult
to interpret. These issues related to RF deconvolution have been
widely recognized and there have been many efforts in overcom-
ing the challenges, which we summarize as the following three
categories:

1. Procedures for data and RF quality controls, especially for
(semi-) automated systems. For example, the IRIS EARS project
has a conservative system rating the RFs (Crotwell & Owens 2005).
Yang et al. (2016) developed a RF quality control system with 13
procedures. The chosen criteria need to account for the time-span of
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seismic experiments as well as the quantity and quality of available
data.

2. Improved algorithms to stabilize the RF deconvolution. The
most classical one is water-level spectral division (Clayton & Wig-
gins 1976). The multitaper approach provides optimal spectra es-
timates by suppressing stochastic effects thus further improving
spectral division (Park & Levin 2000). Time-domain iterative de-
convolution is probably the most widely used RF method these
days, due to its simplicity, robustness at suppressing ringing ef-
fects and ability to obtain consistent RFs from events of dif-
ferent source spectra (Ligorrı́a & Ammon 1999). Gurrola et al.
(1995) performed the time-domain deconvolution as a regularized
simultaneous inversion of a group of events, to improve stability
and suppress artifacts. Recently, more sophisticated statistical de-
convolution methods are proposed, involving Bayesian inference
and time series sparsity modelling (Yildirim et al. 2010, Kolb &
Lekić 2014).

3. Stacking and post-processing of RFs. Stacking has been the
most common approach to improve RF quality. RFs estimated
from a group of events sharing receiver-side structural response
are combined, often through some kind of averaging, to produce
the stacked one with random noise suppressed. When it comes to
RFs on dense arrays, RF post-processing can be another way to-
wards the same goal. For example, Wilson & Aster (2005) applied
frequency–wavenumber (FK) filter to 2-D RF profiles to promote
spatial coherency. On a dense nodal seismic array, Ward et al. (2018)
averaged individual RFs within 10 km to suppress noise and produce
coherent RF images.

In this paper, we propose a new RF deconvolution method to-
wards improving RF estimation on dense arrays. Its main charac-
teristic is to exploit the coherency of dense-array RFs. Fig. 1 is a
schematic example of an RF dense array experiment. The incoming
teleseismic P wave converts to S wave at structural discontinu-
ities. Because of the small station spacing, RFs at nearby stations
correspond to similar ray paths and are coherent. The coherency
exists for laterally smooth discontinuities, as well as sharp fea-
tures such as offsets/steps in discontinuities or scatters due to wave
diffraction. Therefore, as long as the station spacing is substantially
smaller than the depth of structures, the coherency of nearby RFs is
maintained.

We will demonstrate that the adoption of coherency can effec-
tively address instabilities in deconvolution. Intuitively, this is be-
cause the noise (e.g. instrumental/ambient noise, scattering from
shallow/local heterogeneities) are incoherent, while the waveforms
constraining RF phases are coherent. Requiring RF to be spatially
coherent on a dense array naturally excludes the incoherent parts of
waveforms from estimation. Problems, such as non-uniqueness and
overfitting, which are essentially related to noise, are thus largely
suppressed. Although the idea of combining the power of dense
array to RFs is not new, most previous array-based RF methods
are actually on how to better translate RFs to subsurface structures
(e.g. Dueker & Sheehan 1997; Bostock & Rondenay 1999; Chen
et al. 2005a, b, Kim et al. 2012). For these methods, RFs as the
input are assumed to be generated from some standardized proce-
dures. In exploration seismology, multichannel deconvolution has
been established (e.g. Wapenaar et al. 2011). However, in global
seismology, deconvolution on dense-arrays has not systematically
moved into an array-based fashion. The aforementioned FK filter-
ing approach (Wilson & Aster 2005) is an early work touching this
possibility but focused on post-processing of RFs. The method we

propose treats RF coherency more rigorously by integrating it into
RF deconvolution.

To include RF coherency into estimation, we cast RF de-
convolution as an inverse problem, in which the deconvolution
at a single station involves the nearby stations to provide con-
straints. We design the inverse problem to be sparsity-promoting
by parametrizing RFs as a finite number of coherent phases and
seek the optimal solution with the minimum number of phases
required by data. We also jointly invert seismic data from mul-
tiple events, instead of stacking individual RFs, for better sta-
bility and rigorous treatment of data uncertainty (Gurrola et al.
1995). We adopt the Bayesian formulation of inverse problem
which provides the model posterior probability distribution. The
optimal RF and RF uncertainties are indicated by the maxi-
mum a posteriori (MAP) estimation and marginal distributions of
parameters.

The structure of the paper is as follows. We first present
the methodology in Section 2, including the inverse problem
setup and the algorithm for parameter estimation. In Section 3,
we show a synthetic test, where we compare this new method
with conventional RF practices. Section 4 is a real data applica-
tion to the 2016 IRIS community wavefield experiment in Okla-
homa, where we show the challenges the data set poses to con-
vention RF practices and how they are overcome by the new
method.

2 M E T H O D O L O G Y

2.1 Inverse problem setup: single-station deconvolution

We first describe the inverse problem formulation of single-
station deconvolution. It lays down the foundation for the exten-
sion to the array-based version in Section 2.2. We start from the
simplest form of P-wave RF. Given a pair of vertical and ra-
dial component of seismic records at a single station, the prob-
lem of P-wave RF deconvolution can be expressed in frequency
domain as:

R (ω) = Z (ω) E (ω) + N (ω) , (1)

where R, Z and E are the spectra of the radial component, the
vertical component, and the RF, respectively, and N is the spectrum
of noise in the radial component. We parametrize the RF by a finite
number of delta functions with different amplitudes and timings.
Similar parametrization has been widely used in RF methods and
proves useful in producing consistent RFs from events of various
source spectra (e.g. Ligorrı́a & Ammon 1999; Kolb & Lekić 2014;
Wang & Pavlis 2016). With this parametrization, E(ω) can be writ-
ten as:

E (ω; ai , ti ) =
m∑

i=1

ai exp (−iωti ) , (2)

where m is the number of phases, and ti and ai are the tim-
ing and amplitude of the i th spike. For simplicity, we ignore the
normalization factor in the Fourier transform, which is eventu-
ally cancelled out in deconvolution. Using eq. (2), we can rewrite
eq. (1) as:

R (ω) = Z (ω)
m∑

i = 1

ai exp (−iωti ) + N (ω) . (3)

We can then solve for the RF parameters ti , ai (i = 1, . . . , m) by
minimizing the squared misfit of data and model prediction if m is
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Figure 1. (a) Teleseismic P wave (blue) impinges on subsurface structures below a dense seismic profile, including a step along a velocity discontinuity (brown
thick lines to the left) and a single scatterer (the brown dot to the right), and generates Ps conversions (red). Due to wave diffraction, the Ps phase recorded
by the dense array should be coherent at neighbouring stations. (b) Illustration of coherent RFs for the five-station subarray outlined by the green box in (a).
Each coherent RF phase is parametrized by timing t , slowness s and amplitude a. For example, t3, s3 and a3 characterize the negative coherent phase where
s3 = �t3/�d.

known:

argmin
∥∥∥R (ω) − Z (ω)

∑m

i=1
ai exp (−iωti )

∥∥∥2

2
. (4)

We can find the optimal m through approaches such
as L-curve (Hansen 1992) or cross-validation (Aster et al.
2019).

2.2 Inverse problem setup: array-based deconvolution

Array-based deconvolution is built upon the single-station formu-
lation with the consideration of RF coherency. Here, we assume
that any specific RF phase has constant amplitude and slowness
across a subarray (Fig. 1b). With this assumption, deconvolution
at a particular station involves a subarray of stations to provide
constraints. For each phase, besides timing and amplitude, now we
have an additional parameter, slowness (s). For a subarray with
n stations, the spectrum of RF at the jth station (j = 1, . . . , n)
is:

Ej (ω) =
m∑

i=1

ai exp
(−iω

(
ti + si

(
x j − xc

)))
, (5)

where x j and xc are the coordinates of station j and the centre
station. Therefore, the array version of eq. (3) for the jth station
is

Rj (ω) = Z j (ω)
m∑

i = 1

ai exp
(−iω

(
ti + si

(
x j − xc

)))

+N j (ω) ( j = 1, 2, ..., n) . (6)

Putting all the n stations within the subarray together, we can
write eq. (6) into matrix form

R = Z E (θ ) + N. (7)

Here, R = [RT
1 , RT

2 , . . . , RT
n ]T is a column vector formed

by concatenation of the spectra of the radial components at
the n stations, where R j (1 ≤ j ≤ n) is a column vector of
the spectrum of the radial component at the jth station. Z =
di ag([ZT

1 , ZT
2 , . . . , ZT

n ]) is a diagonal matrix filled by the spectra

of the vertical components at the n stations where Z j (1 ≤ j ≤ n)
is a column vector of the spectrum of the vertical component
at the jth station. E = [ET

1 , ET
2 , . . . , ET

n ]T is a column vec-
tor formed by concatenation of the spectra of the n RFs. The
RF spectra are parametrized by θ : ti , si and ai (i = 1, 2, . . . , m)
through (5).

We adopt the Bayesian formulation of inverse problem (Tarantola
2005). Assuming zero-mean Gaussian uncertainties and uniform
priors for all parameters, we have the model posterior probability
distribution

P (θ |R) ∝ P (R|θ) = ex p

(
−1

2
(R − Z E (θ))T C−1

d (R − Z E (θ))

)
,

(8)

where Cd is the data covariance matrix. We use a diagonal Cd with-
out consideration of covariance between different frequency. The
diagonal entries of Cd are the measurement error variances esti-
mated from the pre-event noise and control how data are weighted.
Data is transformed into the frequency domain and all frequencies
within the chosen frequency band are jointly inverted for the fi-
nal RFs. The choice of frequency band depends on the scale of
structures, noise level, instrument response, etc., in the same way
as in conventional RF estimations. The pursuit of more sophis-
ticated Cd and the incorporation of modelling error (i.e. noise
in the vertical components) are potentially important and left
for future work (Yagi & Fukahata 2008; Duputel et al. 2012).
We can find the maximum a posterior (MAP) model estimation
through

argmin
θ

(R − Z E (θ ))T C−1
d (R − Z E (θ )) . (9)

The formulation (7) and (8) above can be extended to jointly
invert data from events with similar receiver-side structural re-
sponses (Gurrola et al. 1995). We prefer joint inversion to
stacking the individual inversions for two reasons. First, we
can ingest our prior knowledge of the data quality into the
estimation rigorously through appropriate design of Cd . Sec-
ondly, joint inversion helps promote model sparsity by taking
all events into consideration simultaneously to constrain the RF
phases.
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Finally, the choice of subarray size, n, needs to account for two
factors. First, the subarray aperture needs to be substantially smaller
than the depths of target structures to satisfy our assumption of phase
coherency, which states that the phases within a subarray have the
same slowness. Secondly, there needs to be enough stations in the
subarray to suppress non-uniqueness and overfitting. Therefore, a
seismic profile with average station spacing substantially smaller
than the depth of target structures would be ideal for applying this
array-based deconvolution method. For the synthetic and real-data
experiment shown in this paper, we find a five-station subarray
setup is optimal. At the two edges of an array, we skip stations
that do not have enough nearby stations on both sides to form
a subarray.

2.3 Solving the inverse problem: parameter estimation

We employ a derivative-free search method—neighbourhood al-
gorithm (NA)—to find the optimal model by solving (9). NA is a
non-linear optimization algorithm developed in Sambridge (1999a).
It conducts direct search in the multidimensional parameter space
in an iterative fashion. Given a set of initial models, in each iter-
ation, Ns new models are generated from the neighbourhood of
the best Nr existing models from the previous iteration. Since
NA searches in the full parameter space, the computation com-
plexity increases exponentially with the number of parameters.
For computational efficiency, we take advantage of the linearity
of the amplitude terms in (5) and rewrite E(θ ) in (7) to sepa-
rate the amplitudes from the nonlinear parameters of timing and
slowness:

E (θ ) = B (t1, . . . , tm, s1, . . . , sm) A, (10)

where B is the matrix containing the unit spike spectra
exp(−iω(ti + si (x j − xc))) constructed from the parameters of tim-
ing and slowness given the station coordinates x1, . . . , xn , and
A = [a1, . . . , am]T is a column vector of phase amplitudes. Given
any particular set of timing and slowness parameters, we can directly
find the optimal A through

A = ((ZB)T C−1
d (ZB))−1(ZB)T C−1

d R. (11)

This separation of linear and nonlinear parameters reduces the
number of parameters for the NA non-linear optimization by one
third and therefore increases the overall computation efficiency sig-
nificantly.

To quantify the uncertainty of the RF parameters, we make use of
the NA ensemble of searched models, each of which is a sample of
the model posterior probability distribution (PPD) given by eq. (8).
We use the ensemble appraisal approach introduced in Sambridge
(1999b). It first defines an approximate model PPD by interpolating
all the samples via Voronoi cells in model space. Gibbs sampler is
then used to perform efficient importance sampling of this approxi-
mate PPD, from which we can readily find the marginal distribution
of parameters.

2.4 Solving the inverse problem: iterative strategy and
number of phases

One key parameter in our inverse problem is the number of phases
m. It not only controls the computational complexity, but also
reflects how many phases the data suggests. We want to design
an objective approach to determine m with the goal of sparsity

promotion—finding the RF with the smallest number of phases re-
quired by data. Our strategy is to iteratively add new phases into
the model, until the misfit reduction from adding a new phase is
statistically insignificant. In each iteration, we solve for the three
parameters (i.e. amplitude, timing and slowness) of the newly added
phase, while still adjusting the parameters for the existing phases
around their optimal values from the previous iteration. The ad-
justment of existing phases, which is not included in conventional
iterative RF methods (e.g. Ligorrı́a & Ammon 1999), is impor-
tant because of the possible trade-offs between the new and the
existing ones.

As more phases are added to the subarray RFs, the objective func-
tion, i.e. the function to minimize in (9), will stabilize/converge.
Beyond certain number of phases, any new phases added are over-
fitting the data. In the conventional iterative time domain method,
the number is often set to be large (e.g. 100) to ensure conver-
gence of RF (Ligorrı́a & Ammon 1999). Instead, we stop adding
new phases when the distribution of residuals is statistically in-
distinguishable from the converged/stabilized residual distribution
with a large number of phases. Assuming a zero-mean Gaussian
data uncertainty N

(
0, σ 2

)
, our stopping criterion is equivalent to

when the σm estimated for the RF with m phases is within cer-
tain confidential interval of the σc estimated for the converged
RF. In practice, we first estimate σc by adding phases to inver-
sion until convergence. Then we estimate the standard deviation
of σc for the number of data points we included in inversion by
parametric bootstrapping. Finally, we choose the smallest num-
ber of phases that bring the σm within one standard deviation
of σc.

Note that the starting assumption of this strategy is that the resid-
uals in the frequency domain follow zero-mean Gaussian distri-
bution. If the spectral power distribution is strongly frequency-
dependent, this assumption may not be appropriate. However, ad-
ditional data pre-processing steps, such as simultaneous spectral
whitening of the radial and vertical component, can help mitigate
this issue.

3 S Y N T H E T I C T E S T

3.1 Model and synthetics

The synthetic test model is based on a 2-D flat subduction scenario
(Fig. 2a), with reference to the central Mexico subduction zone. The
oceanic plate first subducts underneath the continental plate with a
dipping angle of 17◦, then goes flat at 50 km depth for 100 km, and
finally plunges into the mantle at 75◦. For the continental plate, we
set the Moho to have a smooth topography and add a 100-km-long
mid-crust discontinuity. The station distribution is similar to the
Meso-America Subduction Project (MASE, Kim et al. 2010), with
an even spacing of 5 km, substantially smaller than the depths of the
target structures. We use a 2-D finite difference method (Li et al.
2014) to simulate the wavefield from a cluster of seven teleseismic
events with the same azimuth aligned with the profile. The epicentre
distances are centred at 40◦ with 2 km spacing. Fig. 2(b) is a snapshot
of the simulated wavefield for one of the events. Each event has
its unique source time function and therefore different frequency
contents. We apply a 1 Hz low-pass filter to all the synthetic data
and add noise to the radial components. The noise is generated by
first filtering the white noise in the same frequency band as the
data, and then scaled according to a pre-defined signal to noise ratio
(8.7 dB).
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Figure 2. (a) The P-wave velocity model based on a flat subduction scenario to generate synthetic data. The two black triangles indicate the first and last station
of the virtual dense seismic array. Main features to be captured by a RF profile include the low-velocity oceanic crust, the continental Moho with a smooth
topography and a mid-crust discontinuity on the continental side. (b) A snapshot of the simulated wavefield, with the divergence and curl showing the P and S
wavefields, respectively.

3.2 RF estimation

We first estimate RFs from the noise-free synthetics as a proxy
to the ‘true’ RFs, by applying conventional iterative time-domain
deconvolution at individual stations (Fig. 3a). The ‘true’ RFs show
features as expected, including negative and positive phases related
to the top and bottom edges of the oceanic crust. On the continental
side, Ps phases track well the lateral variation of Moho topography
and the mid-crust discontinuity. We then estimate RFs from the
noisy synthetics using conventional practices. We use the iterative
time domain deconvolution for individual RFs and stack the RFs
from the seven events for the final RFs (Fig. 3b). Compared with the
‘true’ RFs (Fig. 3a), main phases in Fig. 3(b) are trackable. However,
weaker phases (e.g. mid-crust discontinuity) are distorted and less
coherent among nearby stations. In the meanwhile, a larger number
of small incoherent phases downgrade the overall resolution of the
image. Because the incoherent phases are not related to any real
subsurface discontinuities, we attribute them to noise introduced by
the deconvolution operations.

Finally, we estimate RFs from the same noisy data but using
our new array-based deconvolution method. At each station, we
joint invert the data from a subarray of five stations and all seven
events for a RF with a minimum number of phases required by data.
Fig. 4 shows an example of the iterative process at one subarray,
with a four-phase RF providing a residual distribution statistically
indistinguishable from a fully converged RF. In other words, this
synthetic data set with noise can only resolve four phases in RF.
Interestingly, the standard deviation of the residuals (σc) for our
converged RF is close to that of the ‘true’ RFs (σt ), while the
one for conventional RFs (Fig. 3b) is substantially lower (σs), sug-
gesting data overfitting by the large number of phases included
in the time-domain iterative deconvolution method. Fig. 5 shows
the three sets of RFs for the subarray and their waveform fittings.

The array-based RFs are much simpler, yet are able to fit the data
equally well as the reference and the conventional ones. Several
weak phases in the ‘true’ RFs (e.g. the negative phase at ∼8 s)
that are free-surface multiples are missing in our RFs. These miss-
ing phases do not improve data fitting in a statistically significant
way and are considered unresolvable in our method. To resolve
them we will need to either include more data or reduce the data
uncertainty.

The full array-based RF image (Fig. 3c) agree well with the ref-
erence RF image (Fig. 3a), with major phases from the low-velocity
oceanic crust and the continental Moho well resolved and tracked
along the profile. Weaker phases, such as those corresponding to
the mid-crust discontinuity, are now clearly resolved along the right
distance range with the right amplitudes. At small distance range,
the phases at ∼10 s is the only resolvable free-surface multiple.
Other multiples, for example, the negative phase at 10 s between 50
and 200 km, are not included into the image according to our cri-
terion of determining the number of phases. Moreover, incoherent
noise is completely absent in the image and the whole profile is of
better interpretability.

In this synthetic test, our input subsurface structures are lat-
erally coherent, such that our assumptions on RF coherence are
largely true. For point diffractors or sharp lateral discontinu-
ities (e.g. Fig. 1a), the assumptions may not hold unless the
diffracted wave is well sampled by a dense array. Otherwise,
the array-based RF estimation may suppress the sharpness of the
structure.

4 A P P L I C AT I O N

Recent deployments of large-N arrays demonstrated the importance
of capturing full seismic wavefields in future seismic imaging
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Figure 3. (a) Reference RFs estimated from the noise-free synthetics of the centre event at 40◦ using the iterative time-domain deconvolution method. (b)
Conventional RFs obtained by stacking the RFs estimated separately from the noisy synthetic data of the seven events with noise. (c) RFs estimated with the
new array-based method by jointly inverting the noisy synthetic data of all seven events.

projects (e.g. Lin et al. 2013; Ward & Lin 2017; Liu et al. 2018).
Here we apply our array-based RF method to the data from the
2016 IRIS community wavefield experiment in northern Oklahoma
(Sweet et al. 2018) to demonstrate the benefit of applying our
method to dense arrays. Conventional RF estimation relies on
stacking many RFs to suppress noise and artefacts. This is feasible

because broad-band seismic experiments often last for a few
months to a few years and record tens to hundreds of teleseismic
events. However, nodal-type sensors typically operate for only a few
weeks due to battery life, limiting the number of available events.
How to retrieve high quality RFs from dense but short-duration
deployments is a key challenge.
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Array-based receiver function deconvolution method 7

Figure 4. Standard deviation of residuals σ versus the number of phases m included in the RF inversions. Black line indicates the converged/stabilized value
σc . The grey zone shows the bootstrapping 1 σ confidence interval around σc , given the number of data points used in the inversion. We pick the first blue
square within the gray zone with m = 4 as our preferred RF. The yellow and green lines indicate the residual standard deviation for the ‘true’ RFs (σt ) and the
conventional stacked RFs (σs ), respectively.

4.1 RF estimation

One major component of the IRIS experiment is three dense profiles
of three-component nodal seismic sensors, with an even spacing of
about 100 m (Fig. 6a). Given the small station spacing and array
aperture, we focus on using RF to probe the shallow sedimen-
tary structures. During the 1-month experiment, there were three
Mw ≥ 5.5 teleseismic events with good signal to noise ratios, two
from Ecuador and one from Japan (Fig. 6b). We assume the station-
side structural response of the three events are the same, because
the piercing points of their incoming P waves for the shallow sed-
imentary structures are very close. This allows us to jointly invert
the data from the three events. To resolve the shallow structures, we
include more high frequency waveforms (0.2–2.5 Hz) in the inver-
sion. In order to model the residuals with Gaussian distributions,
we find it necessary to perform spectral whitening. We estimate the
spectrum power of vertical component and divide it from both radial
and vertical components.

We first estimate RFs using the conventional practices: we de-
rive individual RFs through iterative time domain deconvolution for
each event-station pair and then stack. The resulting RFs along the
three profiles (Figs 7a–c) consistently show a weak first P phase
and several closely following positive phases before 1 s, suggest-
ing the existence of shallow slow structures. However, the phases
are not coherent and hard to interpret. Later in the time window,

we can see a few other phases that display better coherency across
the array: a weak negative phase at 1 s, a strong positive phase
at 1.5 s followed by some less coherent negative phases between
1.8 and 2.3 s. The coherency of these phases across the arrays and
consistency of the three RF profiles suggests approximately flat
layered shallow structures beneath the arrays. However, more de-
tailed interpretation for structures is difficult, because of the limited
resolution.

We then apply our array-based RF deconvolution method to the
same data. Each RF estimation is done by joint inversion of the
three events recorded by a five-station subarray. Fig. 8 shows an ex-
ample of the iterative process for one subarray, where five coherent
phases produce a residual distribution statistically indistinguishable
from RF with more phases. The corresponding conventional RF
produces slightly smaller residuals, but still statistically indistin-
guishable from that of the array-based RF. In Fig. 9, we show the
two sets of RFs and their corresponding waveform fittings for the
subarray. The conventional RFs are of lower resolution, especially
in the first 1 s. Spurious phases are introduced due to overfitting.
In contrast, the array-based RFs are simple and of high resolution.
The uncertainty of phase timing is indicated by the green bar next
to the phase representing 95 per cent confidence interval.

The full array-based RF profile in Figs 7(d)–(f) show high phase
coherency and essentially flat structures. The first 1 s following
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Figure 5. (a–c) display the true RFs, the conventional stacked RFs, and the array-based RFs for one five-station subarray, respectively. The phases at centre
station are showed in darker colours. The green bars next to the phases in (c) indicate the 95 per cent confidence interval of the phase timing. (d–f) Waveform
fitting for the true RFs, the stacked RFs and the array-based RFs, respectively for the centre event at 40◦. The waveform in black is the radial component and
waveform the red is the predicted radial component by convolving the vertical component with the estimated RF. (g–i) Waveform residuals (i.e. the difference
between radial component and the prediction) for the true RFs, the stacked RFs, and the array-based RFs.

the direct P phases of the RFs, which the conventional method re-
solve poorly, now consists of two distinct positive phases trackable
throughout the three profiles. We also obtain coherent positive and
negative phase at about 1.5 and 2 s, respectively, consistent with the
smeared features in the conventional RFs. Interestingly, the weak
but seemingly coherent negative phases at ∼1 s in the conventional

RF profiles are absent in the array-based RF profiles. We carefully
examine this phase and conclude that it is a spurious phase caused
by ringing effect, that is side-lobes, in the conventional method of
deconvolution. The negative phase has opposite polarity and strong
trade-offs with the two nearby positive phases. As a greedy algo-
rithm without adjustment to existing phases, conventional iterative
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Figure 6. (a) Three nodal seismic lines deployed in the IRIS community wavefield experiment in Oklahoma. The station spacing is about 100 m. There are 129
and 49 nodes in the WE and NS profiles, respectively. (b) The three teleseismic events (blue dots) we use for the RF estimations: the 2016 July 11 earthquake
doublet in Ecuador and the 2016 June 26 earthquake in Japan.

time-domain deconvolution cannot account for this trade-off and
may produce this spurious phase before contributions from other
phases are fully accounted for.

Our array-based RF profiles suggest relatively simple and uni-
form shallow structures beneath this region. We suggest that
the two positive phases closely following first P phase are Ps
phases linking to two shallow sedimentary discontinuities. The
later positive phase at 1.5 s and the negative phase at 2 s can

be the multiples, that is PpPs and PpSs/PsPs, or represent two
shallow crustal discontinuities with increasing and decreasing
velocity downwards, respectively. Further geological interpreta-
tion would benefit from other geophysical measurements (e.g.
surface wave dispersions, boreholes) and the local geological
history.

Besides showing the overall improved clarity of the RF pro-
file, this real data application demonstrates that our new method
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Figure 7. (a–c) Conventional stacked RFs along the W–E line, western N–S line and eastern N–S line of the IRIS wavefield experiment, respectively. The
black dashed lines show the cross points of the profiles. (d–f) The same as (a–c) but for our array-based RFs. For parts of the RF profiles, light blue or light
red colours indicate phases added after one more iteration beyond the stopping criteria. In other words, they are not as well resolved as the ones in blue or red
colours.
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Figure 8. The same as Fig. 4 but for the real data application to one subarray in the IRIS wavefield experiment. We pick the first blue square within the grey
zone with m = 5 as our preferred RF, with exceptions of m = 4 at several subarrays.

has advantages over conventional methods in resolving more fea-
tures, especially interfering phases and removing noise introduced
by the side-lobe effects of deconvolution. Indeed, compared with
the conventional method, our proposed method is more complex
and computationally more costly to deliver these advantages. In
practice, sufficient stacking of conventional RFs (e.g. long-term or
permanent stations) might produce RF images of high quality at
lower cost. However, for short-term dense-array deployments (e.g.
1 month) where only a limited number of earthquakes are avail-
able, strong artifacts can exist in conventional RF profiles due to
insufficient stacking. Our new method provides a solution to such
scenarios.

5 C O N C LU S I O N S A N D F U T U R E W O R K

Motivated by the emerging three-component large-N arrays, we
develop a new array-based RF deconvolution method towards co-
herent RF profiles with only phases required by data. To address
common issues such as non-uniqueness and data overfitting in
conventional deconvolution methods, we cast RF estimation as a
sparsity-prompting inverse problem and exploit the wavefield co-
herency on dense arrays. Synthetic test shows that this new method
outperforms conventional practices and produces RF profiles with

higher fidelity and resolution. The real-data application to dense
nodal seismic profiles also demonstrates the new method’s advan-
tages over conventional practices in producing higher-quality RF
images with small amounts of data available on short-term dense
deployments. Compared with the conventional method, our method
comes with higher computational cost due to non-linear inversion
and the sampling of parameter space.

Uncertainty estimation of phase timings is valuable new infor-
mation provided by this method. Theoretically, estimating RFs as an
inverse problem allows us to rigorously quantify RF uncertainties,
which can be valuable during geological interpretations. As dis-
cussed in Sections 2.3 and 2.4, we analyse the NA ensembles and
the residual statistics to estimate the uncertainties. However, our
experiments show that NA’s efficiency drops quickly as the number
of phases increases (e.g. beyond 10). Furthermore, NA does not
perform importance sampling of the model posterior probability
distribution, and the accuracy of the ensemble appraisal approach
we use relies on thorough exploration of the model space (Sam-
bridge 1999b). Therefore, our current RF uncertainty estimation
approach may be biased, especially when a large number of phases
are required by data. In the future, we may use more efficient algo-
rithms, for example, parallel Metropolis–Hastings algorithm (Jacob
et al. 2010), to sample the model space and improve the uncertainty
estimates.
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Figure 9. Similar to Fig. 5 but for the real data application to one subarray in the IRIS wavefield experiment. (a, c, e) are for the conventional stacked RFs and
(b, d, f) are for our array-based RFs. (c, e, d, f) are based on the waveforms of Mw 6.3 event.
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