162 research outputs found

    microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets.

    Get PDF
    BackgroundmicroRNA (miRNA) are important regulators of gene expression. In patients with ischemic stroke we have previously shown that differences in immune cell gene expression are present. In this study we sought to determine the miRNA that are differentially expressed in peripheral blood cells of patients with acute ischemic stroke and thus may regulate immune cell gene expression.MethodsmiRNA from peripheral blood cells of forty-eight patients with ischemic stroke and vascular risk factor controls were compared. Differentially expressed miRNA in patients with ischemic stroke were determined by microarray with qRT-PCR confirmation. The gene targets and pathways associated with ischemic stroke that may be regulated by the identified miRNA were characterized.ResultsIn patients with acute ischemic stroke, miR-122, miR-148a, let-7i, miR-19a, miR-320d, miR-4429 were decreased and miR-363, miR-487b were increased compared to vascular risk factor controls. These miRNA are predicted to regulate several genes in pathways previously identified by gene expression analyses, including toll-like receptor signaling, NF-κβ signaling, leukocyte extravasation signaling, and the prothrombin activation pathway.ConclusionsSeveral miRNA are differentially expressed in blood cells of patients with acute ischemic stroke. These miRNA may regulate leukocyte gene expression in ischemic stroke including pathways involved in immune activation, leukocyte extravasation and thrombosis

    Gram-negative bacterial molecules associate with Alzheimer disease pathology.

    Get PDF
    ObjectiveWe determined whether Gram-negative bacterial molecules are associated with Alzheimer disease (AD) neuropathology given that previous studies demonstrate Gram-negative Escherichia coli bacteria can form extracellular amyloid and Gram-negative bacteria have been reported as the predominant bacteria found in normal human brains.MethodsBrain samples from gray and white matter were studied from patients with AD (n = 24) and age-matched controls (n = 18). Lipopolysaccharide (LPS) and E coli K99 pili protein were evaluated by Western blots and immunocytochemistry. Human brain samples were assessed for E coli DNA followed by DNA sequencing.ResultsLPS and E coli K99 were detected immunocytochemically in brain parenchyma and vessels in all AD and control brains. K99 levels measured using Western blots were greater in AD compared to control brains (p < 0.01) and K99 was localized to neuron-like cells in AD but not control brains. LPS levels were also greater in AD compared to control brain. LPS colocalized with Aβ1-40/42 in amyloid plaques and with Aβ1-40/42 around vessels in AD brains. DNA sequencing confirmed E coli DNA in human control and AD brains.ConclusionsE coli K99 and LPS levels were greater in AD compared to control brains. LPS colocalized with Aβ1-40/42 in amyloid plaques and around vessels in AD brain. The data show that Gram-negative bacterial molecules are associated with AD neuropathology. They are consistent with our LPS-ischemia-hypoxia rat model that produces myelin aggregates that colocalize with Aβ and resemble amyloid-like plaques

    Interaction of phenanthrene and potassium uptake by wheat roots: a mechanistic model

    Full text link

    Intracerebral Hemorrhage and Ischemic Stroke of Different Etiologies Have Distinct Alternatively Spliced mRNA Profiles in the Blood: a Pilot RNA-seq Study.

    Get PDF
    Whole transcriptome studies have used 3'-biased expression microarrays to study genes regulated in the blood of stroke patients. However, alternatively spliced messenger RNA isoforms have not been investigated for ischemic stroke or intracerebral hemorrhage (ICH) in animals or humans. Alternative splicing is the mechanism whereby different combinations of exons of a single gene produce distinct mRNA and protein isoforms. Here, we used RNA sequencing (RNA-seq) to determine if alternative splicing differs for ICH and cardioembolic, large vessel and lacunar causes of ischemic stroke compared to controls. RNA libraries from 20 whole blood samples were sequenced to 200 M 2 × 100 bp reads using Illumina sequencing-by-synthesis technology. Differential alternative splicing was assessed using one-way analysis of variance (ANOVA), and differential exon usage was calculated. Four hundred twelve genes displayed differential alternative splicing among the groups (false discovery rate, FDR; p < 0.05). They were involved in cellular immune response, cell death, and cell survival pathways. Distinct expression signatures based on usage of 308 exons (292 genes) differentiated the groups (p < 0.0005; fold change >|1.2|). This pilot study demonstrates that alternatively spliced genes from whole blood differ in ICH compared to ischemic stroke and differ between different ischemic stroke etiologies. These results require validation in a separate cohort

    Cutter Elements for Drill Bits and Methods for Fabricating Same

    Get PDF
    A method of fabricating a PCD cutter element including a diamond table including a plurality of coated diamond particles fabricated using an atomic layer deposition (ALD) process

    Cutter Elements for Drill Bits and Methods for Fabricating Same

    Get PDF
    A method of fabricating a PCD cutter element including a diamond table including a plurality of coated diamond particles fabricated using an atomic layer deposition (ALD) process

    Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats.

    Get PDF
    Because our recent studies have demonstrated that miR-122 decreased in whole blood of patients and in whole blood of rats following ischemic stroke, we tested whether elevating blood miR-122 would improve stroke outcomes in rats. Young adult rats were subjected to a temporary middle cerebral artery occlusion (MCAO) or sham operation. A polyethylene glycol-liposome-based transfection system was used to administer a miR-122 mimic after MCAO. Neurological deficits, brain infarction, brain vessel integrity, adhesion molecule expression and expression of miR-122 target and indirect-target genes were examined in blood at 24 h after MCAO with or without miR-122 treatment. miR-122 decreased in blood after MCAO, whereas miR-122 mimic elevated miR-122 in blood 24 h after MCAO. Intravenous but not intracerebroventricular injection of miR-122 mimic decreased neurological deficits and brain infarction, attenuated ICAM-1 expression, and maintained vessel integrity after MCAO. The miR-122 mimic also down-regulated direct target genes (e.g. Vcam1, Nos2, Pla2g2a) and indirect target genes (e.g. Alox5, Itga2b, Timp3, Il1b, Il2, Mmp8) in blood after MCAO which are predicted to affect cell adhesion, diapedesis, leukocyte extravasation, eicosanoid and atherosclerosis signaling. The data show that elevating miR-122 improves stroke outcomes and we postulate this occurs via downregulating miR-122 target genes in blood leukocytes
    • …
    corecore