84 research outputs found
Landscape features influence gene flow as measured by cost-distance and genetic analyses: a case study for giant pandas in the Daxiangling and Xiaoxiangling Mountains
<p>Abstract</p> <p>Background</p> <p>Gene flow maintains genetic diversity within a species and is influenced by individual behavior and the geographical features of the species' habitat. Here, we have characterized the geographical distribution of genetic patterns in giant pandas (<it>Ailuropoda melanoleuca</it>) living in four isolated patches of the Xiaoxiangling and Daxiangling Mountains. Three geographic distance definitions were used with the "isolation by distance theory": Euclidean distance (EUD), least-cost path distance (LCD) defined by food resources, and LCD defined by habitat suitability.</p> <p>Results</p> <p>A total of 136 genotypes were obtained from 192 fecal samples and one blood sample, corresponding to 53 unique genotypes. Geographical maps plotted at high resolution using smaller neighborhood radius definitions produced large cost distances, because smaller radii include a finer level of detail in considering each pixel. Mantel tests showed that most correlation indices, particularly bamboo resources defined for different sizes of raster cell, were slightly larger than the correlations calculated for the Euclidean distance, with the exception of Patch C. We found that natural barriers might have decreased gene flow between the Xiaoxiangling and Daxiangling regions.</p> <p>Conclusions</p> <p>Landscape features were found to partially influence gene flow in the giant panda population. This result is closely linked to the biological character and behavior of giant pandas because, as bamboo feeders, individuals spend most of their lives eating bamboo or moving within the bamboo forest. Landscape-based genetic analysis suggests that gene flow will be enhanced if the connectivity between currently fragmented bamboo forests is increased.</p
RNA sampling time on postmortem avian carcasses in the wild
Genetic sampling, especially highâquality RNA from wild avian populations, is challenging in wildlife biology due to rapid RNA degradation. Although carcasses could be a potential RNA source, the optimal postmortem sampling time on the avian carcasses under field conditions remains unclear. Here, we carried out a field experiment on the QinghaiâTibet Plateau (QTP) and evaluated the relationship between PMI and RNA degradation in three tissue types (muscle, brain, and liver) of the domestic chicken Gallus gallus domesticus carcasses. In the muscle and brain tissues, we found that the RNA Integrity Number (RIN) of samples collected within 60 h postmortem was more than 7.0, suggesting a high RNA extract quality. The following RNAâseq experiment demonstrated that gene expression profiles of the samples collected within 36 h postmortem were comparable to those of fresh samples (i.e. 0 h), with a low percentage of differentially expressed genes (< 3.0%) observed between samples at 0 and 36 h postmortem. However, in the liver tissue, RNA samples already degraded at 12 h postmortem, showing low RIN values (< 7.0), different gene expression profiles from fresh samples, and a high percentage of differentially expressed genes (15.6%). Therefore, our study suggests that samples from muscle and brain tissues collected within 36 h postmortem are qualified for RNAâseq analyses. In contrast, only the fresh RNA samples from liver tissue are qualified. Our study provides a practicable and efficient sampling strategy for the transcriptome study on avian populations under extreme environment such as the QTP
Understanding recovery is as important as understanding decline: the case of the crested ibis in China
The wild population of the crested ibis (Nipponia nippon) has recovered remarkably from seven individuals in 1981 to over 7000 in 2021. However, it is unclear how key factors, from endogenous density dependence to exogenous environmental pressure, have contributed to the speciesâ recovery. We used species distribution models to quantify the contributions of climatic variables, human impact, land form and land use in order to understand the recovery process in the context of prevailing environmental conditions. We also calculated the nest density over the past 39 years to estimate the influence of density dependence on population dynamics. We found that the interaction between rice paddy areas and water bodies (rivers, lakes and ponds) had the highest contribution to nest site selection, whereas linear terms for either rice paddies or water bodies alone had little effect. During its recovery, sub-populations in two watersheds have been constrained by high density and have experienced logistic growth, while other sub-populations in over seven watersheds are growing exponentially. Our models indicate that exogenous environmental factors are more important than density restriction at this stage. In Chinaâs transformed landscape, the crested ibis needs both rice paddies and water bodies to fulfil its annual life cycle. Habitat protection should thus cover both habitat types to ensure the long-term survival of this still endangered species
Transcription-associated mutation promotes RNA complexity in highly expressed genes - a major new source of selectable variation
Alternatively spliced transcript isoforms are thought to play a critical role for functional diversity. However, the mechanism generating the enormous diversity of spliced transcript isoforms remains unknown, and its biological significance remains unclear. We analyzed transcriptomes in saker falcons, chickens, and mice to show that alternative splicing occurs more frequently, yielding more isoforms, in highly expressed genes. We focused on hemoglobin in the falcon, the most abundantly expressed genes in blood, finding that alternative splicing produces 10-fold more isoforms than expected from the number of splice junctions in the genome. These isoforms were produced mainly by alternative use of de novo splice sites generated by transcription-associated mutation (TAM), not by the RNA editing mechanism normally invoked. We found that high expression of globin genes increases mutation frequencies during transcription, especially on nontranscribed DNA strands. After DNA replication, transcribed strands inherit these somatic mutations, creating de novo splice sites, and generating multiple distinct isoforms in the cell clone. Bisulfate sequencing revealed that DNA methylation may counteract this process by suppressing TAM, suggesting DNA methylation can spatially regulate RNA complexity. RNA profiling showed that falcons living on the high QinghaiâTibetan Plateau possess greater global gene expression levels and higher diversity of mean to high abundance isoforms (reads per kilobases per million mapped reads â„18) than their low-altitude counterparts, and we speculate that this may enhance their oxygen transport capacity under low-oxygen environments. Thus, TAM-induced RNA diversity may be physiologically significant, providing an alternative strategy in lifestyle evolution
Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai-Tibetan Plateau in a predatory bird
Low oxygen and temperature pose key physiological challenges for endotherms living on the QinghaiâTibetan Plateau (QTP). Molecular adaptations to highâaltitude living have been detected in the genomes of Tibetans, their domesticated animals and a few wild species, but the contribution of transcriptional variation to altitudinal adaptation remains to be determined. Here we studied a top QTP predator, the saker falcon, and analysed how the transcriptome has become modified to cope with the stresses of hypoxia and hypothermia. Using a hierarchical design to study saker populations inhabiting grassland, steppe/desert and highland across Eurasia, we found that the QTP population is already distinct despite having colonized the Plateau <2000 years ago. Selection signals are limited at the cDNA level, but of only seventeen genes identified, three function in hypoxia and four in immune response. Our results show a significant role for RNA transcription: 50% of upregulated transcription factors were related to hypoxia responses, differentiated modules were significantly enriched for oxygen transport, and importantly, divergent EPAS1 functional variants with a refined coâexpression network were identified. Conservative gene expression and relaxed immune gene variation may further reflect adaptation to hypothermia. Our results exemplify synergistic responses between DNA polymorphism and RNA expression diversity in coping with common stresses, underpinning the successful rapid colonization of a top predator onto the QTP. Importantly, molecular mechanisms underpinning highland adaptation involve relatively few genes, but are nonetheless more complex than previously thought and involve fineâtuned transcriptional responses and genomic adaptation
Enhanced transcriptomic resilience following increased alternative splicing and differential isoform production between air pollution conurbations
Adversehealth outcomes caused by ambient particulate matter (PM) pollution occur in a 16progressive process, with neutrophils eliciting inflammation or pathogenesis. We investigated the 17toxico-transcriptomic mechanisms of PM in real-life settings by comparing healthy residents living 18in Beijing and Chengde, the opposing ends of a well-recognised air pollution (AP) corridor in China. 19Beijing recruits (BRs) uniquelyexpressed ~12,000 alternativesplicing (AS)-derived transcripts, 20largely elevating the proportion of transcripts significantly correlated with PM concentration. BRs 21expressed PM-associated isoforms (PMAIs) of PFKFB3and LDHA,encoding enzymes responsible 22for stimulatingand maintaining glycolysis. PMAIsof PFKFB3featured different COOH-terminals, 23targeting PFKFB3 to different sub-cellular functional compartments and stimulating glycolysis. 24PMAIs of LDHAhavelonger 3âUTRs relative to those expressed in Chengderecruits (CRs),allowing 25glycolysis maintenance by enhancing LDHAmRNA stability and translational efficiency. PMAIs 26weredirectly regulated by different HIF-1Aand HIF-1Bisoforms. BRs expressed more non-func-27tional Fasisoforms and a resultant reduction of intact Fasproportion is expectedto inhibit the trans-28mission of apoptotic signals and prolong neutrophil lifespan. BRs expressed both membrane-bound 29and soluble IL-6Risoforms insteadof only one in CRs. The presence of both IL-6Risoforms sug-30gested a higher migration capacity of neutrophils in BRs. PMAIs of HIF-1Aand PFKFB3were down-31regulated inChronic Obstructive Pulmonary Disease patients compared with BRs, implying HIF-1 32mediated defective glycolysis may mediate neutrophil dysfunction. PMAIs could explain large var-33iances of different phenotypes, highlighting their potential application as biomarkers and therapeu-34tic targets in PM-induced diseases, which remain poorly elucidated
Genomic analysis of the domestication and post-Spanish conquest evolution of the llama and alpaca
Background Despite their regional economic importance and being increasingly reared globally, the origins and evolution of the llama and alpaca remain poorly understood. Here we report reference genomes for the llama, and for the guanaco and vicuña (their putative wild progenitors), compare these with the published alpaca genome, and resequence seven individuals of all four species to better understand domestication and introgression between the llama and alpaca. Results Phylogenomic analysis confirms that the llama was domesticated from the guanaco and the alpaca from the vicuña. Introgression was much higher in the alpaca genome (36%) than the llama (5%) and could be dated close to the time of the Spanish conquest, approximately 500 years ago. Introgression patterns are at their most variable on the X-chromosome of the alpaca, featuring 53 genes known to have deleterious X-linked phenotypes in humans. Strong genome-wide introgression signatures include olfactory receptor complexes into both species, hypertension resistance into alpaca, and fleece/fiber traits into llama. Genomic signatures of domestication in the llama include male reproductive traits, while in alpaca feature fleece characteristics, olfaction-related and hypoxia adaptation traits. Expression analysis of the introgressed region that is syntenic to human HSA4q21, a gene cluster previously associated with hypertension in humans under hypoxic conditions, shows a previously undocumented role for PRDM8 downregulation as a potential transcriptional regulation mechanism, analogous to that previously reported at high altitude for hypoxia-inducible factor 1α. Conclusions The unprecedented introgression signatures within both domestic camelid genomes may reflect post-conquest changes in agriculture and the breakdown of traditional management practices
Recommended from our members
Whole-genome survey reveals extensive variation in genetic diversity and inbreeding levels among peregrine falcon subspecies
Article describes how, in efforts to prevent extinction, resource managers are often tasked with increasing genetic diversity in a population of concern to prevent inbreeding depression or improve adaptive potential in a changing environment. The authors used whole-genome resequencing to generate over two million single nucleotide polymorphisms (SNPs) from multiple individuals of all peregrine falcon subspecies
- âŠ