13 research outputs found

    Polymer Chain Generation for Coarse-Grained Models Using Radical-Like Polymerization

    Get PDF
    International audienceThis paper presents major improvements in the efficiency of the so-called Radical-Like Polymerization (RLP) algorithm proposed in ”Polymer chain generation for coarse-grained models using radical-like polymerization” [J. Chem. Phys. 128 (2008)]. Three enhancements are detailed in this paper: (1) the capture radius of a radical is enlarged to increase the probability of finding a neighboring monomer; (2) between each growth step, equilibration is now performed with increasing the relaxation time depending on the actual chain size; (3) the RLP algorithm is now fully parallelized and proposed as a “fix” within the “Lammps” molecular dynamics simulation suite

    Simulation dynamique moléculaire des polymères semicristallins uni et bi-modaux : Nucléation, topologie des chaînes et microstructure

    No full text
    Semicrystalline polymers (such as polyethylene, polylactic acid, polyamide, etc.) are used in a wide range of application (such as automotive, pipes, gearing, etc.) due to promoted mechanical properties. There is strong link between the mechanical properties and microstructure of semicrystalline polymer, such as bimodality, molecular topology (the way polymer chains pass through crystalline and amorphous phases), chain entanglements, lamellar thickness, temperature, and so on. However, these microstructure cannot be access quantitatively in experiment. There exists some molecular dynamics investigations, but the homogeneous crystallization is very difficult to achieve and not extensively discussed. Thus, the crystallization mechanism of polymers and the dependence of microstructure remain relatively unclear and controversy. In this thesis, we have performed the homogeneous crystallization of polymers using a coarse-grained molecular dynamics (CG-MD) model published in our previous article 1, which favors chain alignment and crystallization. The main objective of this thesis is to use CG-MD simulation technique to provide more insights of the homogeneous nucleation and crystal growth behavior of bimodal and unimodal MWD polymers, the influence of bimodality on the molecular topology (loop, tie, cilia) and entanglement concentration, the chain disentanglement process and its influence on lamellar thickening as well the temperature dependence.Les polymères semi-cristallins (comme le polyéthylène, l'acide polylactique, le polyamide, etc.) sont utilisés dans un large éventail d'applications (automobiles, tuyaux, engrenages, etc.) en raison de propriétés mécaniques promues. Il existe un lien étroit entre les propriétés mécaniques et la microstructure du polymère semi-cristallin, comme la bimodalité, la topologie moléculaire (la façon dont les chaînes de polymères passent à travers les phases cristallines et amorphes), les enchevêtrements de chaînes, l'épaisseur lamellar, température, et ainsi de suite. Cependant, ces microstructures ne peuvent pas être accédées quantitativement à l'expérience. Il existe quelques études de dynamique moléculaire, mais la cristallisation homogène est très difficile à réaliser et n'a pas fait l'objet de discussions approfondies. Ainsi, le mécanisme de cristallisation des polymères et la dépendance de la microstructure restent relativement flous et controversés. Le premier chapitre est une introduction de la recherche générale, qui intègre des polymères semi-cristallins, des nucléations et de la cinétique de croissance cristalline, la théorie classique de la nucléation et des simulations numériques. Dans cette thèse, nous avons effectué la cristallisation homogène des polymères à l'aide d'un modèle de dynamique moléculaire à grain grossier (CG-MD) publié dans notre article précédent, qui favorise l'alignement des chaînes et la cristallisation. L'objectif principal de cette thèse est d'utiliser la technique de simulation CG-MD pour fournir plus d'informations sur la nucléation homogène et le comportement de croissance cristalline des polymères MWD bimodaux et unimod, l'influence de la bimodalité sur la topologie moléculaire (boucle, cravate, cils) et la concentration d'enchevêtrement, le processus de démêlage de chaîne et son influence sur l'épaississement lamellar aussi bien que la dépendance de température

    Enhanced nucleation of bimodal molecular weight distribution polymers: A molecular dynamics study

    No full text
    We perform coarse-grained molecular dynamics (CGMD) simulations to study the homogeneous nucleation of bimodal and unimodal molecular weight distribution polymers with equivalent average molecular weight. First, a statistical method is proposed to determine the critical nuclei and thus calculate the free energy barrier of nucleation. From the temperature dependence of diffusion coefficient, we also determine the activation energy of diffusion. Then we calculate the nucleation rate and find that it is consistent with the classical nucleation theory for homogeneous nucleation in semi-crystalline polymers. Compared with unimodal system, the bimodal system exhibits lower interfacial free energy and consequently lower free energy barrier for nucleation, while the two systems have similar activation energy for diffusion. This suggests that the promoted nucleation rate of bimodal molecular weight distribution polymer is a result of the reduction of interfacial free energy, which is eventually a consequence of chain-folding nucleation of long chain component

    Molecular simulation of CO2/CH4 competitive adsorption in organic matter pores in shale under certain geological conditions

    No full text
    To reveal competitive absorption behavior between CH4 and CO2 in organic matter (OM) nanopores, OM pore structure was first characterized using focused ion beam−scanning electron microscope (FIB-SEM) and pore-size distribution was studied using N2 adsorption, using Lower Silurian Longmaxi shale in Sichuan Basin as sample. Then a simplified pillar-layer model was used to study CH4 adsorption behavior and competitive adsorption effect between CO2 and CH4, using grand canonical Mote Carlo (GCMC) method. Research indicates that nanopores with good connectivity widely exist in OM, offering important storage space for absorbed shale gas. The amount of absorbed CH4 can increase with lower temperature and increased pressure, and overpressure will significantly increase the amount of CH4 absorbed underground; CO2 shows high competitive absorption ability; CO2/CH4 selectivity coefficient decreases dramatically with increasing temperature or pressure, or both, and it corresponds to deeper burial depth. CO2 EGR during shale gas exploration will be more efficient if it is conducted after the pressure drops to a certain degree. Key words: organic matter nanopores, FIB-SEM 3D imaging, CH4 adsorption, CO2/CH4 selectivity coefficient, molecular simulatio

    Bio-Sorption Potential of V. zizanioides Grass and Roots for the Removal of Cr (VI)

    No full text
    corecore