665 research outputs found

    Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr–Nd–Pb isotopic systematics of mafic igneous rocks

    Get PDF
    The lithospheric mantle beneath the North China Craton changed dramatically in its geophysical and geochemical characteristics from Palaeozoic to Cenozoic times. This study uses samples of Mesozoic basalts and mafic intrusions from the North China Craton to investigate the nature of this mantle in Mesozoic times. Sr-Nd-Pb isotopic data demonstrate that the Late Mesozoic lithospheric mantle was extremely heterogeneous. In the central craton or the Luzhong region, it is slightly Sr-Nd isotopically enriched, beneath the Taihangshan region it has an EMI character (87Sr/86Sri = 0.7050-0.7066; εNd = -17--10), and beneath the Luxi-Jiaodong region, it possesses EM2-like characteristics (87Sr/86Sri up to 0.7114). Compositional variation with time is also apparent in the Mesozoic lithospheric mantle. Our data suggest that the old lithospheric mantle was modified during Mesozoic times by a silicic melt, where beneath the Luxi-Jiaodong region it was severely modified, but in the Luzhong and Taihangshan regions the effects were much less marked. The silicic melt may have been the product of partial melting of crustal materials brought into the mantle by the subducted slab during the formation of circum-cratonic orogenic belts. This Mesozoic mantle did not survive for a long time, and was replaced by a Cenozoic mantle with depleted geochemical characteristics. © 2004 Cambridge University Press.published_or_final_versio

    Water Quality in Irrigated Paddy Systems

    Get PDF
    Irrigated paddy rice (Oryza sativa L.) is a staple food for roughly half of the world’s population. Concerns over water quality have arisen in recent decades, particularly in China, which is the largest rice-producing country in the world and has the most intensive use of nutrients and water in rice production. On the one hand, the poor water quality has constrained the use of water for irrigation to paddy systems in many areas of the world. On the other hand, nutrient losses from paddy production systems contribute to contamination and eutrophication of freshwater bodies. Here, we review rice production, water requirement, water quality issues, and management options to minimize nutrient losses from paddy systems. We conclude that management of nutrient source, rate, timing, and placement should be combined with the management of irrigation and drainage water to reduce nitrogen and phosphorus losses from paddies. More research is needed to identify cost-effective monitoring approaches and mitigation options, and relevant extension and policy should be enforced to achieve water quality goals. The review is preliminarily based on China’s scenario, but it would also provide valuable information for other rice-producing countries

    TcOPT3, a Member of Oligopeptide Transporters from the Hyperaccumulator Thlaspi caerulescens, Is a Novel Fe/Zn/Cd/Cu Transporter

    Get PDF
    BACKGROUND: Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. METHODOLOGY/PRINCIPAL FINDINGS: We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe(2+) and Zn(2+). Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). CONCLUSIONS: Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation

    NOA1 Functions in a Temperature-Dependent Manner to Regulate Chlorophyll Biosynthesis and Rubisco Formation in Rice

    Get PDF
    NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice

    REUL Is a Novel E3 Ubiquitin Ligase and Stimulator of Retinoic-Acid-Inducible Gene-I

    Get PDF
    RIG-I and MDA5 are cytoplasmic sensors that recognize different species of viral RNAs, leads to activation of the transcription factors IRF3 and NF-κB, which collaborate to induce type I interferons. In this study, we identified REUL, a RING-finger protein, as a specific RIG-I-interacting protein. REUL was associated with RIG-I, but not MDA5, through its PRY and SPRY domains. Overexpression of REUL potently potentiated RIG-I-, but not MDA5-mediated downstream signalling and antiviral activity. In contrast, the RING domain deletion mutant of REUL suppressed Sendai virus (SV)-induced, but not cytoplasmic polyI:C-induced activation of IFN-β promoter. Knockdown of endogenous REUL by RNAi inhibited SV-triggered IFN-β expression, and also increased VSV replication. Full-length RIG-I, but not the CARD domain deletion mutant of RIG-I, underwent ubiquitination induced by REUL. The Lys 154, 164, and 172 residues of the RIG-I CARD domain were critical for efficient REUL-mediated ubiquitination, as well as the ability of RIG-I to induce activation of IFN-β promoter. These findings suggest that REUL is an E3 ubiquitin ligase of RIG-I and specifically stimulates RIG-I-mediated innate antiviral activity

    Plasmodium falciparum Hep1 is required to prevent the self aggregation of PfHsp70-3

    Get PDF
    The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria

    Downregulation of SFRP5 expression and its inverse correlation with those of MMP-7 and MT1-MMP in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As negative regulators in Wnt signaling, Secreted Frizzled-Related Proteins (SFRPs) are downregulated in a series of human cancers; and specifically, some matrix metalloproteinases (MMPs), including MMP-2, MMP-7, MMP-9 and MT1-MMP, are frequently overexpressed in gastric cancer. The aim of this study is to determine the expression status of SFRP5 in gastric cancer and explore the correlation between both the expression of SFRP5 and that of these MMPs in this cancer.</p> <p>Methods</p> <p>Expression of SFRP5, MMP-2, MMP-7, MMP-9 and MT1-MMP was determined by real-time PCR, RT-PCR or Western blotting. The methylation status of <it>SFRP5 </it>was detected by Methylation-specific PCR (MSP). Cell lines with <it>SFRP5 </it>methylation were demethylated by a DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (DAC). KatoIII cells were transfected with pcDNA3.1 <it>SFRP5 </it>vector to strengthen SFRP5 expression. To abrogate SFRP5 expression in MKN1 cells, <it>SFRP5 </it>RNAi plamid was used to transfect them.</p> <p>Results</p> <p>SFRP5 expression was remarkably downregulated in 24 of 32 primary gastric cancer specimens, and even was not detectable in 5 of 8 gastric cancer cell lines. MMP-7 and MT1-MMP mRNA showed a stronger expression in these 24 specimens compared to the other 8 specimens. They also showed higher levels in gastric cancer cell lines AGS and NCI-N87 which had no SFRP5 expression, compared to MKN1 with strong SFRP5 expression. However, they were significantly downregulated, with SFRP5 expression restored in AGS and NCI-N87; and were considerably upregulated with it abrogated in MKN1.</p> <p>Conclusion</p> <p>The results indicate there are frequent occurrences of downregualtion of SFRP5 expression in gastric cancer, primarily due to <it>SFRP5 </it>methylation. It seems to be responsible for the upregulation of MMP-7 expression and MT1-MMP expression on the ground that they are inversely correlated with SFRP5 expression.</p

    A Comprehensive Analysis of the Dynamic Biological Networks in HCV Induced Hepatocarcinogenesis

    Get PDF
    Hepatocellular carcinoma (HCC) is a primary malignancy of the liver, which is closely related to hepatitis C and cirrhosis. The molecular mechanisms underlying the hepatocarcinogenesis induced by HCV infection remain clarified from a standpoint of systems biology. By integrating data from protein-protein interactions, transcriptional regulation, and disease related microarray analysis, we carried out a dynamic biological network analysis on the progression of HCV induced hepatocarcinogenesis, and systematically explored the potentially disease-related mechanisms through a network view. The dysfunctional interactions among proteins and deregulatory relationships between transcription factors and their target genes could be causes for the occurrence and progression of this disease. The six pathologically defined disease stages in the development and progression of HCC after HCV infection were included in this study. We constructed disease-related biological networks for each disease stage, and identified progression-related sub-networks that potentially play roles in the developmental stage of the corresponding disease and participate in the later stage of cancer progression. In addition, we identified novel risk factors related to HCC based on the analysis of the progression-related sub-networks. The dynamic characteristics of the network reflect important features of the disease development and progression, which provide important information for us to further explore underlying mechanisms of the disease
    • …
    corecore