102 research outputs found

    Response of Soil Respiration to Soil Temperature and Moisture in a 50-Year-Old Oriental Arborvitae Plantation in China

    Get PDF
    China possesses large areas of plantation forests which take up great quantities of carbon. However, studies on soil respiration in these plantation forests are rather scarce and their soil carbon flux remains an uncertainty. In this study, we used an automatic chamber system to measure soil surface flux of a 50-year-old mature plantation of Platycladus orientalis at Jiufeng Mountain, Beijing, China. Mean daily soil respiration rates (Rs) ranged from 0.09 to 4.87 µmol CO2 m−2s−1, with the highest values observed in August and the lowest in the winter months. A logistic model gave the best fit to the relationship between hourly Rs and soil temperature (Ts), explaining 82% of the variation in Rs over the annual cycle. The annual total of soil respiration estimated from the logistic model was 645±5 g C m−2 year−1. The performance of the logistic model was poorest during periods of high soil temperature or low soil volumetric water content (VWC), which limits the model's ability to predict the seasonal dynamics of Rs. The logistic model will potentially overestimate Rs at high Ts and low VWC. Seasonally, Rs increased significantly and linearly with increasing VWC in May and July, in which VWC was low. In the months from August to November, inclusive, in which VWC was not limiting, Rs showed a positively exponential relationship with Ts. The seasonal sensitivity of soil respiration to Ts (Q10) ranged from 0.76 in May to 4.38 in October. It was suggested that soil temperature was the main determinant of soil respiration when soil water was not limiting

    A Bio-Catalytic Approach to Aliphatic Ketones

    Get PDF
    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid “Bio-Catalytic conversion” approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals

    hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a.

    Get PDF
    Human telomerase reverse transcriptase (hTERT) plays a key role in tumor invasion and metastasis, but the mechanism of its involvement in these processes is not clear. The purpose of this study is to investigate the possible molecular mechanism of hTERT in the promotion of gastric cancer (GC) metastasis. We found that the up-regulation of hTERT in gastric cancer cells could inhibit the expression of miR-29a and enhance the expression of Integrin β1 (ITGB1). In addition, the invasive capacity of gastric cancer cells was also highly increased after hTERT overexpression. Our study also found that the restoration of miR-29a suppressed the expression of ITGB1 and inhibited GC cell metastasis both in vitro and in vivo. Taken together, our results suggested that hTERT may promote GC metastasis through the hTERT-miR-29a-ITGB1 regulatory pathway

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    The role of LINEs and CpG islands in dosage compensation on the chicken Z chromosome

    Get PDF
    Most avian Z genes are expressed more highly in ZZ males than ZW females, suggesting that chromosome-wide mechanisms of dosage compensation have not evolved. Nevertheless, a small percentage of Z genes are expressed at similar levels in males and females, an indication that a yet unidentified mechanism compensates for the sex difference in copy number. Primary DNA sequences are thought to have a role in determining chromosome gene inactivation status on the mammalian X chromosome. However, it is currently unknown whether primary DNA sequences also mediate chicken Z gene compensation status. Using a combination of chicken DNA sequences and Z gene compensation profiles of 310 genes, we explored the relationship between Z gene compensation status and primary DNA sequence features. Statistical analysis of different Z chromosomal features revealed that long interspersed nuclear elements (LINEs) and CpG islands are enriched on the Z chromosome compared with 329 other DNA features. Linear support vector machine (SVM) classifiers, using primary DNA sequences, correctly predict the Z compensation status for >60% of all Z-linked genes. CpG islands appear to be the most accurate classifier and alone can correctly predict compensation of 63% of Z genes. We also show that LINE CR1 elements are enriched 2.7-fold on the chicken Z chromosome compared with autosomes and that chicken chromosomal length is highly correlated with percentage LINE content. However, the position of LINE elements is not significantly associated with dosage compensation status of Z genes. We also find a trend for a higher proportion of CpG islands in the region of the Z chromosome with the fewest dosage-compensated genes compared with the region containing the greatest concentration of compensated genes. Comparison between chicken and platypus genomes shows that LINE elements are not enriched on sex chromosomes in platypus, indicating that LINE accumulation is not a feature of all sex chromosomes. Our results suggest that CpG islands are not randomly distributed on the Z chromosome and may influence Z gene dosage compensation status

    Heterodimerization of Glycosylated Insulin-Like Growth Factor-1 Receptors and Insulin Receptors in Cancer Cells Sensitive to Anti-IGF1R Antibody

    Get PDF
    Identification of predictive biomarkers is essential for the successful development of targeted therapy. Insulin-like growth factor 1 receptor (IGF1R) has been examined as a potential therapeutic target for various cancers. However, recent clinical trials showed that anti-IGF1R antibody and chemotherapy are not effective for treating lung cancer.In order to define biomarkers for predicting successful IGF1R targeted therapy, we evaluated the anti-proliferation effect of figitumumab (CP-751,871), a humanized anti-IGF1R antibody, against nine gastric and eight hepatocellular cancer cell lines. Out of 17 cancer cell lines, figitumumab effectively inhibited the growth of three cell lines (SNU719, HepG2, and SNU368), decreased p-AKT and p-STAT3 levels, and induced G 1 arrest in a dose-dependent manner. Interestingly, these cells showed co-overexpression and altered mobility of the IGF1R and insulin receptor (IR). Immunoprecipitaion (IP) assays and ELISA confirmed the presence of IGF1R/IR heterodimeric receptors in figitumumab-sensitive cells. Treatment with figitumumab led to the dissociation of IGF1-dependent heterodimeric receptors and inhibited tumor growth with decreased levels of heterodimeric receptors in a mouse xenograft model. We next found that both IGF1R and IR were N-linked glyosylated in figitumumab-sensitive cells. In particular, mass spectrometry showed that IGF1R had N-linked glycans at N913 in three figitumumab-sensitive cell lines. We observed that an absence of N-linked glycosylation at N913 led to a lack of membranous localization of IGF1R and figitumumab insensitivity.The data suggest that the level of N-linked glycosylated IGF1R/IR heterodimeric receptor is highly associated with sensitivity to anti-IGF1R antibody in cancer cells

    Polymorphisms in regulatory regions of Cyclooxygenase-2 gene and breast cancer risk in Brazilians: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclooxygenase-2 (COX-2) is up-regulated in several types of cancer, and it is hypothesized that COX-2 expression may be genetically influenced. Here, we evaluate the association between single-nucleotide polymorphisms (SNPs) in the COX-2 gene (<it>PTGS2</it>) and the occurrence of breast cancer among Brazilian women.</p> <p>Methods</p> <p>The study was conducted prospectively in two steps: First, we screened the promoter region and three fragments of the 3'-untranslated region of <it>PTGS2 </it>from 67 healthy Brazilians to identify SNPs and to select those with a minor allele frequency (MAF) of at least 0.10. The MAF of these selected SNPs was further characterized in 402 healthy volunteers to evaluate potential differences related to heterogeneous racial admixture and to estimate the existence of linkage disequilibrium among the SNPs. The second step was a case-control study with 318 patients and 273 controls designed to evaluate <it>PTGS2 </it>genotype- or haplotype-associated risk of breast cancer.</p> <p>Results</p> <p>The screening analysis indicated nine SNPs with the following MAFs: rs689465 (0.22), rs689466 (0.15), rs20415 (0.007), rs20417 (0.32), rs20419 (0.015), rs5270 (0.02), rs20424 (0.007), rs5275 (0.22) and rs4648298 (0.01). The SNPs rs689465, rs689466, rs20417 and rs5275 were further studied: Their genotypic distributions followed Hardy-Weinberg equilibrium and the MAFs were not affected by gender or skin color. Strong linkage disequilibrium was detected for rs689465, rs20417 and rs5275 in the three possible pairwise combinations. In the case-control study, there was a significant increase of rs5275TC heterozygotes in cases compared to controls (OR = 1.44, 95% CI = 1.01-2.06; P = 0.043), and the haplotype formed by rs689465G, rs689466A, rs20417G and rs5275C was only detected in cases. The apparent association with breast cancer was not confirmed for rs5275CC homozygotes or for the most frequent rs5275C-containing haplotypes.</p> <p>Conclusions</p> <p>Our results indicate no strong association between the four most frequent <it>PTGS2 </it>SNPs and the risk of breast cancer.</p
    corecore