23 research outputs found

    STOCHASTIC DYNAMICS OF TWO PICOPHYTOPLANKTON POPULATIONS IN A REAL MARINE ECOSYSTEM

    Get PDF
    A stochastic reaction-diffusion-taxis model is analyzed to get the stationary distribution along water column of two species of picophytoplankton, that is picoeukaryotes and Prochlorococcus. The model is valid for weakly mixed waters, typical of the Mediterranean Sea. External random fluctuations are considered by adding a multiplicative Gaussian noise to the dynamical equation of the nutrient concentration. The statistical tests show that shape and magnitude of the theoretical concentration profile exhibit a good agreement with the experimental findings. Finally, we study the effects of seasonal variations on picophytoplankton groups, including an oscillating term in the auxiliary equation for the light intensity

    Dynamics of Two Picophytoplankton Groups in Mediterranean Sea: Analysis of the Deep Chlorophyll Maximum by a Stochastic Advection-Reaction-Diffusion Model

    Get PDF
    A stochastic advection-reaction-diffusion model with terms of multiplicative white Gaussian noise, valid for weakly mixed waters, is studied to obtain the vertical stationary spatial distributions of two groups of picophytoplankton, i.e., picoeukaryotes and Prochlorococcus, which account about for 60% of total chlorophyll on average in Mediterranean Sea. By numerically solving the equations of the model, we analyze the one-dimensional spatio-temporal dynamics of the total picophytoplankton biomass and nutrient concentration along the water column at different depths. In particular, we integrate the equations over a time interval long enough, obtaining the steady spatial distributions for the cell concentrations of the two picophytoplankton groups. The results are converted into chlorophyll a and divinil chlorophyll a concentrations and compared with experimental data collected in two different sites of the Sicily Channel (southern Mediterranean Sea). The comparison shows that real distributions are well reproduced by theoretical profiles. Specifically, position, shape and magnitude of the theoretical deep chlorophyll maximum exhibit a good agreement with the experimental values

    Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics

    Get PDF
    In this paper, by using a stochastic reaction-diffusion-taxis model, we analyze the picophytoplankton dynamics in the basin of the Mediterranean Sea, characterized by poorly mixed waters. The model includes intraspecific competition of picophytoplankton for light and nutrients. The multiplicative noise sources present in the model account for random fluctuations of environmental variables. Phytoplankton distributions obtained from the model show a good agreement with experimental data sampled in two different sites of the Sicily Channel. The results could be extended to analyze data collected in different sites of the Mediterranean Sea and to devise predictive models for phytoplankton dynamics in oligotrophic waters

    Evidence of a dense water vein along the Libyan continental margin

    Get PDF
    For the first time it was possible to investigate a still poorly known region of the eastern Mediterranean Sea, the Libyan continental margin. An oceanographic cruise, performed during summer 2006, revealed an important and novel feature: a dense vein flowing along the continental slope. The paper describes the vein evolution with some insights on its dynamic and furnishes an estimate of its transport, which results to be comparable with the Adriatic Deep Water production rate. The cascading into a steep canyon which incises the continental shelf suggests that the vein may play an important role in ventilating the deep layers of the Ionian Sea

    Spatial dynamics and mixing of bluefin tuna in the Atlantic Ocean and Mediterranean Sea revealed using next generation sequencing

    Get PDF
    The Atlantic bluefin tuna is a highly migratory species emblematic of the challenges associated with shared fisheries management. In an effort to resolve the species’ stock dynamics, a genomewide search for spatially informative single nucleotide polymorphisms (SNPs) was undertaken, by way of sequencing reduced representation libraries. An allele frequency approach to SNP discovery was used, combining the data of 555 larvae and young-of-the-year (LYOY) into pools representing major geographical areas and mapping against a newly assembled genomic reference. From a set of 184,895 candidate loci, 384 were selected for validation using 167 LYOY. A highly discriminatory genotyping panel of 95 SNPs was ultimately developed by selecting loci with the most pronounced differences between western Atlantic and Mediterranean Sea LYOY. The panel was evaluated by genotyping a different set of LYOY (n = 326), and from these, 77.8% and 82.1% were correctly assigned to western Atlantic and Mediterranean Sea origins, respectively. The panel revealed temporally persistent differentiation among LYOY from the western Atlantic and Mediterranean Sea (FST = 0.008, p = .034). The composition of six mixed feeding aggregations in the Atlantic Ocean and Mediterranean Sea was characterized using genotypes from medium (n = 184) and large (n = 48) adults, applying population assignment and mixture analyses. The results provide evidence of persistent population structuring across broad geographic areas and extensive mixing in the Atlantic Ocean, particularly in the mid-Atlantic Bight and Gulf of St. Lawrence. The genomic reference and genotyping tools presented here constitute novel resources useful for future research and conservation efforts

    PICOPHYTOPLANKTON DYNAMICS IN NOISY MARINE ENVIRONMENT

    No full text
    We present a stochastic reaction-diffusion-taxis model to describe the picophytoplankton dynamics along a water column. The model, which is valid for poorly mixed waters, typical of the Mediterranean Sea, considers intraspecific competition of picophytoplankton for light and nutrients. Random fluctuations of environmental variables are taken into account by adding a source of multiplicative noise to the diffusion equation for the picophytoplankton biomass concentration, whose distribution along the water column shows a maximum at a certain depth. After converting our results into chlorophyll a concentrations, we compare theoretical distributions, obtained for different noise intensities, with the experimental chlorophyll a distribution sampled in a site of the Strait of Sicily. Specifically, we find that position and height of the chlorophyll a peak concentration obtained from the model are in a very good agreement with field observations. Finally, we consider the effects of seasonal variations on phytoplankton dynamics by adding an oscillating term in the equation for the light intensity

    Holocene millennial-scale productivity variations in the Sicily Channel (Mediterranean Sea)

    No full text
    This study analyzes coccolithophore abundance fluctuations (e.g., Emiliania huxleyi, Gephyrocapsa specimens, and Florisphaera profunda) in core MD01-2444 sediment strata retrieved at the Iberian Margin, northeastern Atlantic Ocean. Coccolithophores are calcareous nannofossils, a major component of the oceanic phytoplankton, which provide information about past ecological and climatological variability. Results are supported by data on fossil organic compounds (sea surface temperatures, alkenones, and n-hexacosan-1-ol index) and geochemical analyses (benthic ?13Ccc and planktonic ?18Occ isotopes). Three scenarios are taken into account for this location at centennial-scale resolution over the last 70,000 years: the Holocene and the stadial and interstadial modes. The different alternatives are described by means of elements such as nutrients; upwelling phenomena; temperatures at surface and subsurface level; or the arrival of surface turbid, fresh, and cold waters due to icebergs, low sea level, increased aridity, and dust. During the Holocene, moderate primary productivity was observed (mainly concentrated in E. huxleyi specimens); surface temperatures were at maxima while the water column was highly ventilated by northern-sourced polar deep waters and warmer subsurface, nutrient-poor subtropical waters. Over most of the last glacial stadials, surface productivity weakened (higher F. profunda and reworked specimen percentages and lower diunsaturated and triunsaturated C37 alkenones); the arrival of cold Arctic surface waters traced by tetraunsaturated C37 peaks and large E. huxleyi, together with powerful ventilated southern-sourced polar deep waters, disturbed, in all likelihood, the delicate vertical equilibrium while preventing significant upwelling mixing. Finally, during the last glacial interstadials (lower F. profunda percentages, nonreworked material, and higher diunsaturated and triunsaturated C37 alkenones) a combined signal is observed: warm surface temperatures were concurrent with generally low oxygenation of the deep-sea floor, moderate arrival of northern-sourced deep waters, and subsurface cold, nutrient-rich, recently upwelled waters, probably of polar origin; these particular conditions may have promoted vertical mixing while enhancing surface primary productivity (mainly of Gephyrocapsa specimens)

    A novel method to simulate the 3D chlorophyll distribution in marine oligotrophic waters

    No full text
    A 3D advection-diffusion-reaction model is proposed to investigate the abundance of phytoplankton in a difficult-to-access ecosystem such as the Gulf of Sirte (southern Mediterranean Sea) characterized by oligotrophic waters. The model exploits experimentally measured environmental variables to reproduce the dynamics of four populations that dominate phytoplankton community in the studied area: Synechococcus, Prochlorococcus HL, Prochlorococcus LL and picoeukaryotes. The theoretical results obtained for phytoplankton abundances are converted into chl-a and Dvchl-a concentrations, and the simulated vertical chlorophyll profiles are compared to the corresponding experimentally acquired data during the MedSudMed-08 oceanographic survey. Non parametric tests showed that the 3D model successfully simulates the spatial distribution of chlorophyll in most of the Gulf of Sirte. Statistical analysis indicates that about 80% of the simulated chlorophyll vertical profiles are not significantly different from the experimental data. This model is also a useful tool to predict chlorophyll distributions in hard-to-access areas, where experimental data cannot be collected. Moreover, the model could be used to predict the effects of global warming on phytoplankton dynamics and primary production in marine ecosystems
    corecore