102 research outputs found

    Continuous Flow Methylene Blue Active Substances Method for the Determination of Anionic Surfactants in River Water and Biodegradation Test Samples

    Get PDF
    Anionic surfactants are commonly determined with the use of the methylene blue active substances (MBAS) standard method, which is time-consuming and labor-intensive. Therefore, new methods for determination of anionic surfactants are needed. In this study, the standard MBAS method for determination of anionic surfactants was modified and adjusted to work in a continuous flow system combined with spectrophotometric measurement. The developed method was found to be satisfactory in terms of sensitivity and precision, with a short time of analysis. The quantification limit for anionic surfactants was at 16 μg L(−1), with a relative standard deviation of 1.3 % for a model sample and 3.8 % for a river water sample. The results obtained for environmental samples were comparable to those obtained by using the standard MBAS method; however, the developed continuous flow method is faster, more sensitive and consumes smaller doses of chemical reagents

    Bacterial properties changing under Triton X-100 presence in the diesel oil biodegradation systems : from surface and cellular changes to mono- and dioxygenases activities

    Get PDF
    Triton X-100, as one of the most popular surfactants used in bioremediation techniques, has been reported as an effective agent enhancing the biodegradation of hydrocarbons. However efficient, the surfactant’s role in different processes that together enable the satisfying biodegradation should be thoroughly analysed and verified. In this research, we present the interactions of Triton X-100 with the bacterial surfaces (hydrophobicity and zeta potential), its influence on the enzymatic properties (considering mono- and dioxygenases) and profiles of fatty acids, which then all together were compared with the biodegradation rates. The addition of various concentrations of Triton X-100 to diesel oil system revealed different cell surface hydrophobicity (CSH) of the tested strains. The results demonstrated that for Pseudomonas stutzeri strain 9, higher diesel oil biodegradation was correlated with hydrophilic properties of the tested strain and lower Triton X-100 biodegradation. Furthermore, an increase of the branched fatty acids was observed for this strain

    Significance of the presence of antibiotics on the microbial consortium in wastewater - The case of nitrofurantoin and furazolidone.

    Full text link
    Antibiotics in wastewater leads to migration of pollutants and disrupts natural processes of mineralization of organic matter. In order to understand the mechanism of this, research was undertaken on the influence of nitrofurantoin (NFT) and furazolidone (FZD), on the behaviour of a consortium of microorganisms present in a model wastewater in a bioreactor. Our study confirmed biodegradation of the antibiotics by the microbial consortium, with the degradation efficiency within 10 days of 65% for FZD, but only 20% for NFT. The kinetic study proved that the presence of analysed antibiotics had no adverse effect on the microbes, but the consortium behaviour differ significantly with the NFT reducing the consumption of organic carbon in wastewater and increasing the production of extracellular biopolymeric and volatile organic compounds, and the FZD reducing assimilation of other carbon sources to a less extent, at the expense of cellular focus on biodegradation of this antibiotic

    Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation

    Get PDF
    Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P66614][Br] and [P66614][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria

    Why do microorganisms produce rhamnolipids?

    Full text link
    corecore