14 research outputs found

    Characterization of plastid psbT sense and antisense RNAs

    Get PDF
    The plastid psbB operon is composed of the psbB, psbT, psbH, petB and petD genes. The psbN gene is located in the intergenic region between psbT and psbH on the opposite DNA strand. Transcription of psbN is under control of sigma factor 3 (SIG3) and psbN read-through transcription produces antisense RNA to psbT mRNA. To investigate on the question of whether psbT gene expression might be regulated by antisense RNA, we have characterized psbT sense and antisense RNAs. Mapping of 5â€Č and 3â€Č-ends by circular RT–PCR and /or 5â€Č-RACE experiments reveal the existence of two different sense and antisense RNAs each, one limited to psbT RNA and a larger one that covers, in addition, part of the psbB coding region. Sense and antisense RNAs seem to form double-stranded RNA/RNA hybrids as indicated by nuclease digestion experiments followed by RT–PCR amplification to reveal nuclease resistant RNA. Western immunoblotting using antibodies made against PSBT protein and primer extension analysis of different plastid mRNA species and psbT antisense RNA suggest that sequestering of psbT mRNA by hybrid formation results in translational inactivation of the psbT mRNA and provides protection against nucleolytic degradation of mRNA during photooxydative stress conditions

    lpxC and yafS are the Most Suitable Internal Controls to Normalize Real Time RT-qPCR Expression in the Phytopathogenic Bacteria Dickeya dadantii

    Get PDF
    Background: Quantitative RT-PCR is the method of choice for studying, with both sensitivity and accuracy, the expression of genes. A reliable normalization of the data, using several reference genes, is critical for an accurate quantification of gene expression. Here, we propose a set of reference genes, of the phytopathogenic bacteria Dickeya dadantii and Pectobacterium atrosepticum, which are stable in a wide range of growth conditions. [br/] Results: We extracted, from a D. dadantii micro-array transcript profile dataset comprising thirty-two different growth conditions, an initial set of 49 expressed genes with very low variation in gene expression. Out of these, we retained 10 genes representing different functional categories, different levels of expression (low, medium, and high) and with no systematic variation in expression correlating with growth conditions. We measured the expression of these reference gene candidates using quantitative RT-PCR in 50 different experimental conditions, mimicking the environment encountered by the bacteria in their host and directly during the infection process in planta. The two most stable genes (ABF-0017965 (lpxC) and ABF-0020529 (yafS) were successfully used for normalization of RT-qPCR data. Finally, we demonstrated that the ortholog of lpxC and yafS in Pectobacterium atrosepticum also showed stable expression in diverse growth conditions. [br/] Conclusions: We have identified at least two genes, lpxC (ABF-0017965) and yafS (ABF-0020509), whose expressions are stable in a wide range of growth conditions and during infection. Thus, these genes are considered suitable for use as reference genes for the normalization of real-time RT-qPCR data of the two main pectinolytic phytopathogenic bacteria D. dadantii and P. atrosepticum and, probably, of other Enterobacteriaceae. Moreover, we defined general criteria to select good reference genes in bacteria

    The nucleoid-associated proteins H-NS and FIS modulate the DNA supercoiling response of the pel genes, the major virulence factors in the plant pathogen bacterium Dickeya dadantii

    Get PDF
    Dickeya dadantii is a pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to the production of pectate lyases (Pels) that can destroy the plant cell walls. Previously we found that the pel gene expression is modulated by H-NS and FIS, two nucleoid-associated proteins (NAPs) modulating the DNA topology. Here, we show that relaxation of the DNA in growing D. dadantii cells decreases the expression of pel genes. Deletion of fis aggravates, whereas that of hns alleviates the negative impact of DNA relaxation on pel expression. We further show that H-NS and FIS directly bind the pelE promoter and that the response of D. dadantii pel genes to stresses that induce DNA relaxation is modulated, although to different extents, by H-NS and FIS. We infer that FIS acts as a repressor buffering the negative impact of DNA relaxation on pel gene transcription, whereas H-NS fine-tunes the response of virulence genes precluding their expression under suboptimal conditions of supercoiling. This novel dependence of H-NS effect on DNA topology expands our understanding of the role of NAPs in regulating the global bacterial gene expression and bacterial pathogenicity

    Systematic targeted mutagenesis of the MarR/SlyA family members of Dickeya dadantii 3937 reveals a role for MfbR in the modulation of virulence gene expression in response to acidic pH

    No full text
    International audiencePathogenicity of Dickeya dadantii is a process involving several factors, such as plant cell wall-degrading enzymes and adaptation systems to adverse conditions encountered in the apoplast. Regulators of the MarR family control a variety of biological processes, including adaptation to hostile environments and virulence. Analysis of the members of this family in D. dadantii led to the identification of a new regulator, MfbR, which controls virulence. MfbR represses its own expression but activates genes encoding plant cell wall-degrading enzymes. Purified MfbR increases the binding of RNA polymerase at the virulence gene promoters and inhibits transcription initiation at the mfbR promoter. MfbR activity appeared to be modulated by acidic pH, a stress encountered by pathogens during the early stages of infection. Expression of mfbR and its targets, during infection, showed that MfbR is unable to activate virulence genes in acidic conditions at an early step of infection. In contrast, alkalinization of the apoplast, during an advanced stage of infection, led to the potentialization of MfbR activity resulting in plant cell wall degrading enzyme production. This report presents a new example of how pathogens adjust virulence-associated factors during the time-course of an infection

    Transcriptional organization of the large and the small ATP synthase operons, atpI/H/F/A and atpB/E, in Arabidopsis thaliana chloroplasts.

    No full text
    International audienceThe ATP synthase is a ubiquitous enzyme which is found in bacteria and eukaryotic organelles. It is essential in the photosynthetic and respiratory processes, by transforming the electrochemical proton gradient into ATP energy via proton transport across the membranes. In Escherichia coli, the atp genes coding for the subunits of the ATP synthase enzyme are grouped in the same transcriptional unit, while in higher plants the plastid atp genes are organized into a large (atpI/H/F/A) and a small (atpB/E) atp operon. By using the model plant Arabidopsis thaliana, we have investigated the strategy evolved in chloroplasts to overcome the physical separation of the atp gene clusters and to coordinate their transcription. We show that all the identified promoters in the two atp operons are PEP dependent and require sigma factors for specific recognition. Our results indicate that transcription of the two atp operons is initiated by at least one common factor, the essential SIG2 factor. Our data show that SIG3 and SIG6 also participate in transcription initiation of the large and the small atp operon, respectively. We propose that SIG2 might be the factor responsible for coordinating the basal transcription of the plastid atp genes and that SIG3 and SIG6 might serve to modulate plastid atp expression with respect to physiological and environmental conditions. However, we observe that in the sigma mutants (sig2, sig3 and sig6) the deficiency in the recognition of specific atp promoters is largely balanced by mRNA stabilization and/or by activation of otherwise silent promoters, indicating that the rate-limiting step for expression of the atp operons is mostly post-transcriptional

    The nucleoid-associated protein Fis directly modulates the synthesis of cellulose, an essential component of pellicle-biofilms in the phytopathogenic bacterium Dickeya dadantii.

    No full text
    International audienceBacteria use biofilm structures to colonize surfaces and to survive in hostile conditions, and numerous bacteria produce cellulose as a biofilm matrix polymer. Hence, expression of the bcs operon, responsible for cellulose biosynthesis, must be finely regulated in order to allow bacteria to adopt the proper surface-associated behaviours. Here we show that in the phytopathogenic bacterium, Dickeya dadantii, production of cellulose is required for pellicle-biofilm formation and resistance to chlorine treatments. Expression of the bcs operon is growth phase-regulated and is stimulated in biofilms. Furthermore, we unexpectedly found that the nucleoid-associated protein and global regulator of virulence functions, Fis, directly represses bcs operon expression by interacting with an operator that is absent from the bcs operon of animal pathogenic bacteria and the plant pathogenic bacterium Pectobacterium. Moreover, production of cellulose enhances plant surface colonization by D. dadantii. Overall, these data suggest that cellulose production and biofilm formation may be important factors for surface colonization by D. dadantii and its subsequent survival in hostile environments. This report also presents a new example of how bacteria can modulate the action of a global regulator to co-ordinate basic metabolism, virulence and modifications of lifestyle

    The HIV Restriction Factor Profile in the Brain Is Associated with the Clinical Status and Viral Quantities

    No full text
    HIV-encoded DNA, RNA and proteins persist in the brain despite effective antiretroviral therapy (ART), with undetectable plasma and cerebrospinal fluid viral RNA levels, often in association with neurocognitive impairments. Although the determinants of HIV persistence have garnered attention, the expression and regulation of antiretroviral host restriction factors (RFs) in the brain for HIV and SIV remain unknown. We investigated the transcriptomic profile of antiretroviral RF genes by RNA-sequencing with confirmation by qRT-PCR in the cerebral cortex of people who are uninfected (HIV[−]), those who are HIV-infected without pre-mortem brain disease (HIV[+]), those who are HIV-infected with neurocognitive disorders (HIV[+]/HAND) and those with neurocognitive disorders with encephalitis (HIV[+]/HIVE). We observed significant increases in RF expression in the brains of HIV[+]/HIVE in association with the brain viral load. Machine learning techniques identified MAN1B1 as a key gene that distinguished the HIV[+] group from the HIV[+] groups with HAND. Analyses of SIV-associated RFs in brains from SIV-infected Chinese rhesus macaques with different ART regimens revealed diminished RF expression among ART-exposed SIV-infected animals, although ART interruption resulted in an induced expression of several RF genes including OAS3, RNASEL, MX2 and MAN1B1. Thus, the brain displays a distinct expression profile of RFs that is associated with the neurological status as well as the brain viral burden. Moreover, ART interruption can influence the brain’s RF profile, which might contribute to disease outcomes

    Early Antiretroviral Therapy Prevents Viral Infection of Monocytes and Inflammation in Simian Immunodeficiency Virus-Infected Rhesus Macaques.

    No full text
    International audienceDespite early antiretroviral therapy (ART), treatment interruption is associated with viral rebound, indicating early viral reservoir (VR) seeding and absence of full eradication of human immunodeficiency virus type 1 (HIV-1) that may persist in tissues. Herein, we address the contributing role of monocytes in maintaining VRs under ART, since these cells may represent a source of viral dissemination due to their ability to replenish mucosal tissues in response to injury. To this aim, monocytes with classical (CD14+), intermediate (CD14+ CD16+), and nonclassical (CD16+) phenotypes and CD4+ T cells were sorted from the blood, spleen, and intestines of untreated and early-ART-treated simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) before and after ART interruption. Cell-associated SIV DNA and RNA were quantified. We demonstrated that in the absence of ART, monocytes were productively infected with replication-competent SIV, especially in the spleen. Reciprocally, early ART efficiently (i) prevented the establishment of monocyte VRs in the blood, spleen, and intestines and (ii) reduced systemic inflammation, as indicated by changes in interleukin-18 (IL-18) and IL-1 receptor antagonist (IL-1Ra) plasma levels. ART interruption was associated with a rebound in viremia that led to the rapid productive infection of both CD4+ T cells and monocytes. Altogether, our results reveal the benefits of early ART initiation in limiting the contribution of monocytes to VRs and SIV-associated inflammation.IMPORTANCE Despite the administration of antiretroviral therapy (ART), HIV persists in treated individuals and ART interruption is associated with viral rebound. Persistent chronic immune activation and inflammation contribute to disease morbidity. Whereas monocytes are infected by HIV/SIV, their role as viral reservoirs (VRs) in visceral tissues has been poorly explored. Our work demonstrates that monocyte cell subsets in the blood, spleen, and intestines do not significantly contribute to the establishment of early VRs in SIV-infected rhesus macaques treated with ART. By preventing the infection of these cells, early ART reduces systemic inflammation. However, following ART interruption, monocytes are rapidly reinfected. Altogether, our findings shed new light on the benefits of early ART initiation in limiting VR and inflammation
    corecore