25 research outputs found

    Inhibitors of riboflavin biosynthetic pathway enzymes as potential antibacterial drugs

    Get PDF
    Multiple drug resistance is the main obstacle in the treatment of bacterial diseases. Resistance against antibiotics demands the exploration of new antimicrobial drug targets. A variety of in silico and genetic approaches show that the enzymes of the riboflavin biosynthetic pathway are crucial for the survival of bacteria. This pathway is absent in humans thus enzymes of the riboflavin biosynthetic pathway are emerging drug targets for resistant pathogenic bacterial strains. Exploring the structural details, their mechanism of action, intermediate elucidation, and interaction analysis would help in designing suitable inhibitors of these enzymes. The riboflavin biosynthetic pathway consists of seven distinct enzymes, namely, 3,4-dihydroxy-2-butanone 4-phosphate synthase, GTP cyclohydrolase II, pyrimidine deaminase/reductase, phosphatase, lumazine synthase, and riboflavin synthase. The present review summarizes the research work that has been carried out on these enzymes in terms of their structures, active site architectures, and molecular mechanism of catalysis. This review also walks through small molecule inhibitors that have been developed against several of these enzymes

    Novel engineered nanobodies specific for N-terminal region of alpha-synuclein recognize Lewy-body pathology and inhibit in-vitro seeded aggregation and toxicity.

    Get PDF
    Nanobodies (Nbs), the single-domain antigen-binding fragments of dromedary heavy-chain antibodies (HCAb), are excellent candidates as therapeutic and diagnostic tools in synucleinopathies because of their small size, solubility and stability. Here, we constructed an immune nanobody library specific to the monomeric form of alpha-synuclein (α-syn). Phage display screening of the library allowed the identification of a nanobody, Nbα-syn01, specific for α-syn. Unlike previously developed nanobodies, Nbα-syn01 recognized the N-terminal region which is critical for in vitro and in vivo aggregation and contains many point mutations involved in early PD cases. The affinity of the monovalent Nbα-syn01 and the engineered bivalent format BivNbα-syn01 measured by isothermal titration calorimetry revealed unexpected results where Nbα-syn01 and its bivalent format recognized preferentially α-syn fibrils compared to the monomeric form. Nbα-syn01 and BivNbα-syn01 were also able to inhibit α-syn-seeded aggregation in vitro and reduced α-syn-seeded aggregation and toxicity in cells showing their potential to reduce α-syn pathology. Moreover, both nanobody formats were able to recognize Lewy-body pathology in human post-mortem brain tissue from PD and DLB cases. Additionally, we present evidence through structural docking that Nbα-syn01 binds the N-terminal region of the α-syn aggregated form. Overall, these results highlight the potential of Nbα-syn01 and BivNbα-syn01 in developing into a diagnostic or a therapeutic tool for PD and related disorders

    Plasma Bead Entrapped Liposomes as a Potential Drug Delivery System to Combat Fungal Infections

    No full text
    Fibrin-based systems offer promises in drug and gene delivery as well as tissue engineering. We established earlier a fibrin-based plasma beads (PB) system as an efficient carrier of drugs and antigens. In the present work, attempts were made to further improve its therapeutic efficacy exploiting innovative ideas, including the use of plasma alginate composite matrices, proteolytic inhibitors, cross linkers, and dual entrapment in various liposomal formulations. In vitro efficacy of the different formulations was examined. Pharmacokinetics of the formulations encapsulating Amphotericin B (AmpB), an antifungal compound, were investigated in Swiss albino mice. While administration of the free AmpB led to its rapid elimination (<72 h), PB/liposome-PB systems were significantly effective in sustaining AmpB release in the circulation (>144 h) and its gradual accumulation in the vital organs, also compared to the liposomal formulations alone. Interestingly, the slow release of AmpB from PB was unusual compared to other small molecules in our earlier findings, suggesting strong interaction with plasma proteins. Molecular interaction studies of bovine serum albumin constituting approximately 60% of plasma with AmpB using isothermal titration calorimetry and in silico docking verify these interactions, explaining the slow release of AmpB entrapped in PB alone. The above findings suggest that PB/liposome-PB could be used as safe and effective delivery systems to combat fungal infections in humans

    Molecular Analysis and Conformational Dynamics of Human MC4R Disease-Causing Mutations

    No full text
    Obesity is a chronic disease with increasing cases among children and adolescents. Melanocortin 4 receptor (MC4R) is a G protein-coupled transporter involved in solute transport, enabling it to maintain cellular homeostasis. MC4R mutations are associated with early-onset severe obesity, and the identification of potential pathological variants is crucial for the clinical management of patients with obesity. A number of mutations have been reported in MC4R that are responsible for causing obesity and related complications. Delineating these mutations and analyzing their effect on MC4R’s structure will help in the clinical intervention of the disease condition as well as designing potential drugs against it. Sequence-based pathogenicity and structure-based protein stability analyses were conducted on naturally occurring variants. We used computational tools to analyze the conservation of these mutations on MC4R’s structure to map the structural variations. Detailed structural analyses were carried out for the active site mutations (i.e., D122N, D126Y, and S188L) and their influence on the binding of calcium and the agonist or antagonist. We performed molecular dynamics (MD) simulations of the wild-type and selected mutations to delineate the conformational changes, which provided us with possible reasons for MC4R’s instability in these mutations. This study provides insight into the potential direction toward understanding the molecular basis of MC4R dysfunction in disease progression and obesity

    The Role of Amyloids in Alzheimer\u27s and Parkinson\u27s Diseases

    Get PDF
    With varying clinical symptoms, most neurodegenerative diseases are associated with abnormal loss of neurons. They share the same common pathogenic mechanisms involving misfolding and aggregation, and these visible aggregates of proteins are deposited in the central nervous system. Amyloid formation is thought to arise from partial unfolding of misfolded proteins leading to the exposure of hydrophobic surfaces, which interact with other similar structures and give rise to form dimers, oligomers, protofibrils, and eventually mature fibril aggregates. Accumulating evidence indicates that amyloid oligomers, not amyloid fibrils, are the most toxic species that causes Alzheimer\u27s disease (AD) and Parkinson\u27s disease (PD). AD has recently been recognized as the ‘twenty-first century plague’, with an incident rate of 1% at 60 years of age, which then doubles every fifth year. Currently, 5.3 million people in the US are afflicted with this disease, and the number of cases is expected to rise to 13.5 million by 2050. PD, a disorder of the brain, is the second most common form of dementia, characterized by difficulty in walking and movement. Keeping the above views in mind, in this review we have focused on the roles of amyloid in neurodegenerative diseases including AD and PD, the involvement of amyloid in mitochondrial dysfunction leading to neurodegeneration, are also considered in the review

    Nanoparticle Formulations in the Diagnosis and Therapy of Alzheimer\u27s Disease

    No full text
    Alzheimer\u27s disease (AD) is one of the most common age-related diseases that occurs because of the deposition of amyloid fibrils in a form of extracellular plaques containing β-amyloid peptide (Aβ) and tangles are found as intracellular deposit in the brain made up of twisted strands of aggregated microtubule binding protein. Scores of small molecule inhibitors have been designed for the treatment of AD. However some of these drugs cannot pass through the brain-blood-barrier (BBB). To overcome this problem, various nanoparticles (NPs) or nanomedicines (NMs) have been synthesized. These nanoparticles exploit the existing physiological mechanisms of passing through the BBB, including receptor- and adsorptive-mediated transcytosis that facilitate the transcellular transport of nanoparticle from the blood to the brain. During the last decades, varieties of nanoparticles that differ in the composition have been developed, and they have the potential application in the diagnostics and therapy of AD. The most common NP formulations that have major impact in the diagnosis and therapy of AD include polymeric NPs (PPs), gold NPs, gadolinium NPs, selenium NPs, protein-based NPs, polysaccharide-based NPs, etc. The goal of this review is to provide discussion of the application of different types of NP formulations in the diagnosis and therapy of AD

    Mechanisms of Amyloid Proteins Aggregation and Their Inhibition by Antibodies, Small Molecule Inhibitors, Nano-particles and Nano-bodies

    Get PDF
    Protein misfolding and aggregation can be induced by a wide variety of factors, such as dominant disease-associated mutations, changes in the environmental conditions (pH, temperature, ionic strength, protein concentration, exposure to transition metal ions, exposure to toxins, posttranslational modifications including glycation, phosphorylation, and sulfation). Misfolded intermediates interact with similar intermediates and progressively form dimers, oligomers, protofibrils, and fibrils. In amyloidoses, fibrillar aggregates are deposited in the tissues either as intracellular inclusion or extracellular plaques (amyloid). When such proteinaceous deposit occurs in the neuronal cells, it initiates degeneration of neurons and consequently resulting in the manifestation of various neurodegenerative diseases. Several different types of molecules have been designed and tested both in vitro and in vivo to evaluate their anti-amyloidogenic efficacies. For instance, the native structure of a protein associated with amyloidosis could be stabilized by ligands, antibodies could be used to remove plaques, oligomer-specific antibody A11 could be used to remove oligomers, or prefibrillar aggregates could be removed by affibodies. Keeping the above views in mind, in this review we have discussed protein misfolding and aggregation, mechanisms of protein aggregation, factors responsible for aggregations, and strategies for aggregation inhibition

    S1 File -

    No full text
    Metabolic stress involved in several dysregulation disorders such as type 2 diabetes mellitus (T2DM) results in down regulation of several heat shock proteins (HSPs) including DNAJB3. This down regulation of HSPs is associated with insulin resistance (IR) and interventions which induce the heat shock response (HSR) help to increase the insulin sensitivity. Metabolic stress leads to changes in signaling pathways through increased activation of both c-jun N-terminal kinase-1 (JNK1) and the inhibitor of κB inflammatory kinase (IKKβ) which in turn leads to inactivation of insulin receptor substrates 1 and 2 (IRS-1 and IRS-2). DNAJB3 interacts with both JNK1 and IKKβ kinases to mitigate metabolic stress. In addition DNAJB3 also activates the PI3K-PKB/AKT pathway through increased phosphorylation of AKT1 and its substrate AS160, a Rab GTPase-activating protein, which results in mobilization of GLUT4 transporter protein and improved glucose uptake. We show through pull down that AK T1 is an interacting partner of DNAJB3, further confirmed by isothermal titration calorimetry (ITC) which quantified the avidity of AKT1 for DNAJB3. The binding interface was identified by combining protein modelling with docking of the AKT1-DNAJB3 complex. DNAJB3 is localized in the cytoplasm and ER, where it interacts directly with AKT1 and mobilizes AS160 for glucose transport. Inhibition of AKT1 resulted in loss of GLUT4 translocation activity mediated by DNAJB3 and also abolished the protective effect of DNAJB3 on tunicamycin-induced ER stress. Taken together, our findings provide evidence for a direct protein-protein interaction between DNAJB3 and AKT1 upon which DNAJB3 alleviates ER stress and promotes GLUT4 translocation.</div

    Structural details of DNAJB3 and AKT1.

    No full text
    (a) Modular organization of human DNAJB3 protein. DNAJB3 contains the canonical J domain near N-terminal and a long C-terminal portion. While J domain structure is known, the C-terminal structure is unknow. (b) Modular organization of AKT1 protein. AKT1 is comprised of three well known domains, designated Pleckstrin homology (PH) domain located at N-terminal, Protein kinase domain in the middle and Protein kinase_C domain, located at C-terminal. (c) Cartoon representation of the overall modelled human DNAJB3 (hDNAJB3) structure. Secondary structures are shown in salmon for α-helix, and purple for loops. (d) Cartoon representation of the overall modelled mouse DNAJB3 (mDNAJB3) structure. Secondary structures are shown in salmon for α-helix, sea green for β-strands, and purple for loops. (e) Structural alignment of modelled hDnajb3 (orange), mDNAJB3 (sea green) and NMR structure of the DNAJB6b (PDBID: 6U3R, grey). The structures are highly similar in overall fold with protrusion of C-terminal as CTD in case of mDNAJB3.</p

    ITC analysis of DNAJB3: AKT1 interaction.

    No full text
    (a) ITC titration curve (upper panel) and binding isotherms (low panel) of DNAJB3: AKT1 interactions. The upper panels show the raw ITC data expressed as change in thermal power with respect to time over the period of titration. In the lower panels, change in molar heat is expressed as a function of molar ratio of titrant. The solid line in the lower panels indicates the non-linear least squares fit for the integrated data to a one-site binding model using the integrated ORIGIN software. The solid line in the lower panels indicates the non-linear least squares fit for the integrated data to a one-site binding model using the integrated ORIGIN software. (b) ITC measurements showing of titration curve (upper panel) and binding isotherm of DNAJB3 titration into Sox2-HMG protein. No binding was observed.</p
    corecore