11 research outputs found

    The position of nonsense mutations can predict the phenotype severity : A survey on the DMD gene

    Get PDF
    A nonsense mutation adds a premature stop signal that hinders any further translation of a protein-coding gene, usually resulting in a null allele. To investigate the possible exceptions, we used theDMDgene as an ideal model. First, because dystrophin absence causes Duchenne muscular dystrophy (DMD), while its reduction causes Becker muscular dystrophy (BMD). Second, theDMDgene is X-linked and there is no second allele that can interfere in males. Third, databases are accumulating reports on many mutations and phenotypic data. Finally, becauseDMDmutations may have important therapeutic implications. For our study, we analyzed large databases (LOVD, HGMD and ClinVar) and literature and revised critically all data, together with data from our internal patients. We totally collected 2593 patients. Positioning these mutations along the dystrophin transcript, we observed a nonrandom distribution of BMD-associated mutations within selected exons and concluded that the position can be predictive of the phenotype. Nonsense mutations always cause DMD when occurring at any point in fifty-one exons. In the remaining exons, we found milder BMD cases due to early 5' nonsense mutations, if reinitiation can occur, or due to late 3' nonsense when the shortened product retains functionality. In the central part of the gene, all mutations in some in-frame exons, such as in exons 25, 31, 37 and 38 cause BMD, while mutations in exons 30, 32, 34 and 36 cause DMD. This may have important implication in predicting the natural history and the efficacy of therapeutic use of drug-stimulated translational readthrough of premature termination codons, also considering the action of internal natural rescuers. More in general, our survey confirm that a nonsense mutation should be not necessarily classified as a null allele and this should be considered in genetic counselling.Peer reviewe

    Epidermal growth factor receptor gene copy number in 101 advanced colorectal cancer patients treated with chemotherapy plus cetuximab

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Responsiveness to Cetuximab alone can be mediated by an increase of Epidermal Growth factor Receptor (EGFR) Gene Copy Number (GCN). Aim of this study was to assess the role of EGFR-GCN in advanced colorectal cancer (CRC) patients receiving chemotherapy plus Cetuximab.</p> <p>Methods</p> <p>One hundred and one advanced CRC patients (43 untreated- and 58 pre-treated) were retrospectively studied by fluorescence in situ hybridization (FISH) to assess EGFR-GCN and by immunohistochemistry (IHC) to determine EGFR expression. Sixty-one out of 101 patients were evaluated also for k-ras status by direct sequencing. Clinical end-points were response rate (RR), progression-free survival (PFS) and overall survival (OS).</p> <p>Results</p> <p>Increased EGFR-GCN was found in 60/101 (59%) tumor samples. There was no correlation between intensity of EGFR-IHC and EGFR-GCN (p = 0.43). Patients receiving chemotherapy plus Cetuximab as first line treatment had a RR of 70% (30/43) while it was 18% (10/56) in the group with previous lines of therapy (p < 0.0001). RR was observed in 29/60 (48%) of patients with increased EGFR-GCN and in 6/28 (21%) in those without (p = 0.02). At multivariate analyses, number of chemotherapy lines and increased EGFR-GCN were predictive of response; EGFR-IHC score, increased EGFR-GCN and number of chemotherapy lines were significantly associated with a significant better PFS. Response to therapy was the only prognostic predictive factor for OS. In the 60 patients analyzed for k-ras mutations, number of chemotherapy lines, increased EGFR-GCN and k-ras wild type status predicted a better PFS.</p> <p>Conclusion</p> <p>In metastatic CRC patients treated with chemotherapy plus Cetuximab number of chemotherapy lines and increased EGFR-GCN were significantly associated with a better clinical outcome, independent of k-ras status.</p

    High Somatic Mutation and Neoantigen Burden Do Not Correlate with Decreased Progression-Free Survival in HCC Patients not Undergoing Immunotherapy

    No full text
    Cancer genome instability leads to accumulation of mutations which may result into tumor-specific mutated &ldquo;neoantigens&rdquo;, not be affected by central T-cell tolerance. Such neoantigens are considered the optimal target for the patient&rsquo;s anti-tumor T cell immunity as well as for personalized cancer immunotherapy strategies. However, only a minor fraction of predicted neoantigens are relevant to the clinical outcome. In the present study, a prediction algorithm was applied using datasets of RNA sequencing from all 377 Hepatocellular carcinoma (HCC) patients available at The Cancer Genome Atlas (TCGA), to predict neoantigens to be presented by each patient&rsquo;s autologous HLA molecules. Correlation with patients&rsquo; survival was performed on the 115 samples for whom the exact date of death was known. A total of 30 samples were used for the training set, and 85 samples were used for the validation sets. Neither the somatic mutations nor the number nor the quality of the predicted neoantigens correlate as single parameter with survival of HCC patients who do not undergo immunotherapy treatment. Furthermore, the preferential presentation of such neoantigens in the context of one of the major histocompatibility complex MHC class I molecules does not have an impact on the survival. On the contrary, the expression of Granzyme A (GZMA) is significantly correlated with survival and, in the context of high GZMA, a direct correlation between number and quality of neoantigens with survival is observed. This is in striking contrast to results described in cancer patients undergoing immunotherapy, in which a strong correlation between Tumor Mutational Burden (TMB), number of predicted neoantigens and survival has been reported

    A new genetic cause of spastic ataxia: the p.Glu415Lys variant in TUBA4A

    No full text
    Tubulinopathies encompass neurodevelopmental disorders caused by mutations in genes encoding for different isotypes of &amp; alpha;- and &amp; beta;-tubulins, the structural components of microtubules. Less frequently, mutations in tubulins may underlie neurodegenerative disorders. In the present study, we report two families, one with 11 affected individuals and the other with a single patient, carrying a novel, likely pathogenic, variant (p. Glu415Lys) in the TUBA4A gene (NM_006000). The phenotype, not previously described, is that of spastic ataxia. Our findings widen the phenotypic and genetic manifestations of TUBA4A variants and add a new type of spastic ataxia to be taken into consideration in the differential diagnosis

    Genetic epidemiology of inherited retinal diseases in a large patient cohort followed at a single center in Italy

    Get PDF
    Abstract Inherited retinal diseases (IRDs) are the leading cause of vision loss in the working-age population. We performed a retrospective epidemiological study to determine the genetic basis of IRDs in a large Italian cohort (n = 2790) followed at a single referral center. We provided, mainly by next generation sequencing, potentially conclusive molecular diagnosis for 2036 patients (from 1683 unrelated families). We identified a total of 1319 causative sequence variations in 132 genes, including 353 novel variants, and 866 possibly actionable genotypes for therapeutic approaches. ABCA4 was the most frequently mutated gene (n = 535; 26.3% of solved cases), followed by USH2A (n = 228; 11.2%) and RPGR (n = 102; 5.01%). The other 129 genes had a lower contribution to IRD pathogenesis (e.g. CHM 3.5%, RHO 3.5%; MYO7A 3.4%; CRB1 2.7%; RPE65 2%, RP1 1.8%; GUCY2D 1.7%). Seventy-eight genes were mutated in five patients or less. Mitochondrial DNA variants were responsible for 2.1% of cases. Our analysis confirms the complex genetic etiology of IRDs and reveals the high prevalence of ABCA4 and USH2A mutations. This study also uncovers genetic associations with a spectrum of clinical subgroups and highlights a valuable number of cases potentially eligible for clinical trials and, ultimately, for molecular therapies

    Digital health and Clinical Patient Management System (CPMS) platform utility for data sharing of neuromuscular patients: the Italian EURO-NMD experience

    Get PDF
    Abstract Background The development of e-health technologies for teleconsultation and exchange of knowledge is one of the core purposes of European Reference Networks (ERNs), including the ERN EURO-NMD for rare neuromuscular diseases. Within ERNs, the Clinical Patient Management System (CPMS) is a web-based platform that seeks to boost active collaboration within and across the network, implementing data sharing. Through CPMS, it is possible to both discuss patient cases and to make patients’ data available for registries and databases in a secure way. In this view, CPMS may be considered a sort of a temporary storage for patients’ data and an effective tool for data sharing; it facilitates specialists’ consultation since rare diseases (RDs) require multidisciplinary skills, specific, and outstanding clinical experience. Following European Union (EU) recommendation, and to promote the use of CPMS platform among EURO-NMD members, a twelve-month pilot project was set up to train the 15 Italian Health Care Providers (HCPs). In this paper, we report the structure, methods, and results of the teaching course, showing that tailored, ERN-oriented, training can significantly enhance the profitable use of the CPMS. Results Throughout the training course, 45 professionals learned how to use the many features of the CPMS, eventually opening 98 panels of discussion—amounting to 82% of the total panels included in the EURO-NMD. Since clinical, genetic, diagnostic, and therapeutic data of patients can be securely stored within the platform, we also highlight the importance of this platform as an effective tool to discuss and share clinical cases, in order to ease both case solving and data storing. Conclusions In this paper, we discuss how similar course could help implementing the use of the platform, highlighting strengths and weaknesses of e-health for ERNs. The expected result is the creation of a “map” of neuromuscular patients across Europe that might be improved by a wider use of CPMS
    corecore