129 research outputs found

    Vertical broad-line region structure in nearby active galactic nuclei

    Full text link
    Broad emission lines are emitted in the surroundings of supermassive black holes in the centers of active galactic nuclei (AGN). This region is spatially not resolved. We intend to get information on the structure and geometry of this broad emitting line region (BLR) based on line profile observations. We model the rotational and turbulent velocities in the line-emitting regions based on observed full-width at half maximum line values (FWHM) and {\sigma}_{line} of the variable broad emission lines in four nearby AGN: NGC 3783, NGC 7469, NGC 5548, and 3C 390.3. On the basis of these velocities, we estimate the height of the line-emitting regions above the midplane in context with their distances from the center. The H{\beta} lines are emitted in a more flattened configuration above the midplane in comparison to the highly ionized lines. The H{\beta} lines originate at heights of 0.7 to 1.6 light-days and at distances of 1.4 to 24 light-days with height/distance (H/R) ratios of only 0.07 to 0.5. The highly ionized lines originate at smaller radii than the H{\beta} lines and/or at greater distances above the midplane with H/R values of 0.2 to 1.7. In total, the emission lines do not originate in a thin atmosphere of an accretion disk but rather at very extended regions above an accretion disk. The observed geometries of the line-emitting regions resemble the geometries of accretion disk wind models. Furthermore, the angle of the central opening cone (generated by the emitting regions of the highly ionized lines) is small for those galaxies with slow rotational velocities and increases with the rotation velocity of the central region. The derived geometries of the line-emitting regions of all four AGN are consistent with the geometries that are predicted in outflowing disk wind models.Comment: 12 pages, 18 figures, Astronomy & Astrophysics in pres

    The shape of broad-line profiles in AGN

    Full text link
    We present a study of the broad optical/UV emission line profiles in AGN (active galactic nuclei) to get information on the dominant velocity components (turbulence, rotation, etc.) in the central broad-line region (BLR). We introduce line broadening simulations of emission line profiles and compare these results with the largest homogeneous data set of reverberation-mapped AGN. The underlying broad-line profiles in AGN are Lorentzian profiles caused by turbulence in the line emitting region. The turbulent velocities are different for the different line emitting regions of Ha, Hg, Lya, CIII] 1909, He II 1640, and Si IV 1400. The turbulent velocities go from 400 km/s for Hb up to 3,800 km/s for Lya+Nv 1240. The dominating broadening mechanism of these profiles is broadening due to rotation. The rotation velocities causing the line profile broadening go from 500 km/s up to 6,500 km/s. Here we present interrelations between observed emission line widths (FWHM) and their related rotational velocities to correct for the contribution of the turbulence to the broad-line profiles.Comment: 10 pages, 19 figures, to be published in A&

    Accretion disk wind as explanation for the broad-line region structure in NGC 5548

    Full text link
    Supermassive black holes in the centers of active galactic nuclei (AGN) are surrounded by broad-line regions (BLRs). The broad emission lines seen in the AGN spectra are emitted in this spatially unresolved region. We intend to obtain information on the structure and geometry of this BLR based on observed line profiles. We modeled the rotational and turbulent velocities in the line-emitting region on the basis of the line-width FWHM and line dispersion sigma_line of the variable broad emission lines in NGC5548. Based on these velocities we estimated the height of the line-emitting regions above the midplane in the context of their distances from the center. The broad emission lines originate at distances of 2 to 27 light days from the center. Higher ionized lines originate in the inner region (lesser equal 13 light days) in specific filamentary structures 1 to 14 light days above the midplane. In contrast, the Hbeta line is emitted in an outer (6 - 26 light days), more flattened configuration at heights of 0.7 to 4 light days only above the midplane. The derived geometry of the line-emitting region in NGC5548 is consistent with an outflowing wind launched from an accretion disk.Comment: 4 pages, 5 figures, Astron. & Astrophys. Letter, in pres

    The environment of AGNs and the activity degree of their surrounding galaxies

    Full text link
    Aims. We present results of a comprehensive spectral study on the large-scale environment of AGNs based on Sloan Spectroscopic Survey data. Methods. We analyzed the spectra of galaxies in the environment of AGN and other activity classes up to distances of 1 Mpc. Results. The mean H{\alpha} and [OIII] {\lambda}5007 line luminosities in the environmental galaxies within a projected radius of 1 Mpc are highest around Seyfert 1 galaxies, with decreasing luminosities for Seyfert 2 and HII galaxies, and lowest for absorption line galaxies. Furthermore, there is a trend toward H{\alpha} and [OIII] luminosities in the environmental galaxies increasing as a function of proximity to the central emission line galaxies. There is another clear trend toward a neighborhood effect within a radius of 1000 kpc for the AGN and non-AGN types: Seyfert galaxies tend to have the highest probability of having another Seyfert galaxy in the neighborhood. HII galaxies tend to have the highest probability of having another HII galaxy in the neighborhood, etc. The number of companions within 1000 kpc is inversely correlated with the H{\alpha}, [OIII] {\lambda}5007, as well as with the continuum luminosities of the central galaxies, regardless of whether they are of Seyfert, HII, or absorption line types.Comment: 9 pages, 6 figures, to be published in A&

    Broad-line region structure and kinematics in the radio galaxy 3C 120

    Full text link
    Broad emission lines originate in the surroundings of supermassive black holes in the centers of active galactic nuclei (AGN). One method to investigate the extent, structure, and kinematics of the BLR is to study the continuum and line profile variability in AGN. We selected the radio-loud Seyfert 1 galaxy 3C 120 as a target for this study. We took spectra with a high signal-to-noise ratio of 3C 120 with the 9.2m Hobby-Eberly Telescope between Sept. 2008 and March 2009. In parallel, we photometrically monitored the continuum flux at the Wise observatory. We analyzed the continuum and line profile variations in detail (1D and 2D reverberation mapping) and modeled the geometry of the line-emitting regions based on the line profiles. We show that the BLR in 3C 120 is stratified with respect to the distance of the line-emitting regions from the center with respect to the line widths (FWHM) of the rms profiles and with respect to the variability amplitude of the emission lines. The emission line wings of H{\alpha} and H{\beta} respond much faster than their central region. This is explained by accretion disk models. In addition, these lines show a stronger response in the red wings. However, the velocity-delay maps of the helium lines show a stronger response in the blue wing. Furthermore, the HeII{\lambda}4686 line responds faster in the blue wing in contradiction to observations made one and a half years later when the galaxy was in a lower state. The faster response in the blue wing is an indication for central outflow motions when this galaxy was in a bright state during our observations. The vertical BLR structure in 3C 120 coincides with that of other AGN. We confirm the general trend: the emission lines of narrow line AGN originate at larger distances from the midplane than AGN with broader emission lines.Comment: 18 pages, 25 figures, Astronomy & Astrophysics in pres

    Proving strong magnetic fields near to the central black hole in the quasar PG0043+039 via cyclotron lines

    Full text link
    The optical luminous quasar PG0043+039 has not been detected before in deep X-ray observations indicating the most extreme optical-to-X-ray slope index αox{\alpha}_{ox} of all quasars. This study aims to detect PG0043+039 in a deep X-ray exposure. Furthermore, we wanted to check out whether this object shows specific spectral properties in other frequency bands. We took deep X-ray (XMM-Newton), far-ultraviolet (HST), and optical (HET, SALT telescopes) spectra of PG0043+039 simultaneously in July 2013. We just detected PG0043+039 in our deep X-ray exposure. The steep αox=2.37±0.05{\alpha}_{ox} = -2.37 {\pm} 0.05 gradient is consistent with an unusual steep gradient FνναF_{\nu} {\sim} {\nu}^{\alpha} with α=2.67±0.02{\alpha} = -2.67 {\pm} 0.02 seen in the UV/far-UV continuum. The optical/UV continuum flux has a clear maximum near 2500 {\AA}. The UV spectrum is very peculiar because it shows broad humps in addition to known emission lines. A modeling of these observed humps with cyclotron lines can explain their wavelength positions, their relative distances, and their relative intensities. We derive plasma temperatures of T {\sim} 3keV and magnetic field strengths of B {\sim} 2 ×108{\times} 10^8 G for the line-emitting regions close to the black hole.Comment: 4 pages, 3 figures, Astronomy & Astrophysics in pres

    The broad-line region and dust torus size of the Seyfert 1 galaxy PGC50427

    Full text link
    We present the results of a three years monitoring campaigns of the z=0.024z = 0.024 type-1 active galactic nucleus (AGN) PGC50427. Through the use of Photometric Reverberation Mapping with broad and narrow band filters, we determine the size of the broad-line emitting region by measuring the time delay between the variability of the continuum and the Hα\alpha emission line. The Hα\alpha emission line responds to blue continuum variations with an average rest frame lag of 19.0±1.2319.0 \pm 1.23 days. Using single epoch spectroscopy we determined a broad-line Hα\alpha velocity width of 1020 km s1^{-1} and in combination with the rest frame lag and adoption a geometric scaling factor f=5.5f = 5.5, we calculate a black hole mass of MBH17×106MM_{BH} \sim 17 \times 10^{6} M_{\odot}. Using the flux variation gradient method, we separate the host galaxy contribution from that of the AGN to calculate the rest frame 5100\AA~ luminosity at the time of our monitoring campaign. The rest frame lag and the host-subtracted luminosity permit us to derive the position of PGC50427 in the BLR size -- AGN luminosity diagram, which is remarkably close to the theoretically expected relation of RL0.5R \propto L^{0.5}. The simultaneous optical and NIR (JJ and KsK_{s}) observations allow us to determine the size of the dust torus through the use of dust reverberation mapping method. We find that the hot dust emission (1800K\sim 1800K) lags the optical variations with an average rest frame lag of 46.2±2.6046.2 \pm 2.60 days. The dust reverberation radius and the nuclear NIR luminosity permit us to derive the position of PGC50427 on the known τMV\tau - M{V} diagram. The simultaneus observations for the broad-line region and dust thermal emission demonstrate that the innermost dust torus is located outside the BLR in PGC50427, supporting the unified scheme for AGNs. (Abstract shortened, see the manuscript.)Comment: 11 pages, 23 figures, accepted for publication in Astronomy and Astrophysic

    Long-term optical, UV, and X-ray continuum variations in the changing-look AGN HE 1136-2304

    Full text link
    A strong outburst in the X-ray continuum and a change of its Seyfert spectral type was detected in HE 1136-2304 in 2014. The spectral type changed from nearly Seyfert 2 type (1.95) to Seyfert 1.5 type in comparison to previous observations taken ten to twenty years before. In a subsequent variability campaign we wanted to investigate whether this outburst was a single event or whether the variability pattern following the outburst was similar to those seen in other variable Seyfert galaxies. In addition to a SALT spectral variability campaign, we carried out optical continuum as well as X-ray and UV (Swift) monitoring studies from 2014 to 2017. HE 1136-2304 strongly varied on timescales of days to months from 2014 to 2017. No systematic trends were found in the variability behavior following the outburst in 2014. A general decrease in flux would have been expected for a tidal disruption event. This could not be confirmed. More likely the flux variations are connected to irregular fluctuations in the accretion rate. The strongest variability amplitudes have been found in the X-ray regime: HE 1136-2304 varied by a factor of eight during 2015. The amplitudes of the continuum variability (from the UV to the optical) systematically decreased with wavelength following a power law F_var = a ×{\times} {\lambda}^-c with c = 0.84. There is a trend that the B-band continuum shows a delay of three light days with respect to the variable X-ray flux. The Seyfert type 1.5 did not change despite the strong continuum variations for the period between 2014 and 2017.Comment: 25 pages, 21 figures, Astronomy & Astrophysics in pres
    corecore