19 research outputs found

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Requirements Classification and Reuse: Crossing Domain Boundaries

    No full text
    A serious problem in the classification of software project artefacts for reuse is the natural partitioning of classification terms into many separate domains of discourse. This problem is particularly pronounced when dealing with requirements artefacts that need to be matched with design components in the refinement process. In such a case, requirements can be described with terms drawn from a problem domain (e.g. games), whereas designs with the use of terms characteristic for the solution domain (e.g. implementation). The two domains have not only distinct terminology, but also different semantics and use of their artefacts. This paper describes a method of cross-domain classification of requirements texts with a view to facilitate their reuse and their refinement into reusable design components. Keywords Requirements Refinement, Reuse, Information Retrieval 1. Introduction Reuse of development work-products in the earliest phases of software life-cycle, e.g. requirements engine..

    Rapid determination of protein contents in microencapsulated fish oil supplements by ATR-FTIR spectroscopy and partial least square regression (PLSR) analysis

    Full text link
    Following the recent success in quantitative analysis of essential fatty acid compositions in a commercial microencapsulated fish oil (?EFO) supplement, we extended the application of portable attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic technique and partial least square regression (PLSR) analysis for rapid determination of total protein contents-the other major component in most commercial ?EFO powders. In contrast to the traditional chromatographic methodology used in a routine amino acid analysis (AAA), the ATR-FTIR spectra of the ?EFO powder can be acquired directly from its original powder form with no requirement of any sample preparation, making the technique exceptionally fast, noninvasive, and environmentally friendly as well as being cost effective and hence eminently suitable for routine use by industry. By optimizing the spectral region of interest and number of latent factors through the developed PLSR strategy, a good linear calibration model was produced as indicated by an excellent value of coefficient of determination R2 = 0.9975, using standard ?EFO powders with total protein contents in the range of 140-450 mg/g. The prediction of the protein contents acquired from an independent validation set through the optimized PLSR model was highly accurate as evidenced through (1) a good linear fitting (R2 = 0.9759) in the plot of predicted versus reference values, which were obtained from a standard AAA method, (2) lowest root mean square error of prediction (11.64 mg/g), and (3) high residual predictive deviation (6.83) ranked in very good level of predictive quality indicating high robustness and good predictive performance of the achieved PLSR calibration model. The study therefore demonstrated the potential application of the portable ATR-FTIR technique when used together with PLSR analysis for rapid online monitoring of the two major components (i.e., oil and protein contents) in finished ?EFO powders in the actual manufacturing setting
    corecore