51 research outputs found

    A novel AMPK activator, WS070117, improves lipid metabolism discords in hamsters and HepG2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WS070117 is a novel small molecule compound that significantly improves lipid metabolism disorders in high-fat-diet (HFD) induced hyperlipidemia in hamsters.</p> <p>Methods and Results</p> <p>We evaluated liver/body weight ratio, liver histology, serum and hepatic lipid content in HFD-fed hamsters treated with WS070117 for 8 weeks. Comparing with HFD fed hamsters, WS070117 (2 mg/kg per day and above) reduced serum triglyceride (TAG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and hepatic cholesterol and triglyceride contents. Oil Red O staining of liver tissue also showed that WS070117 improved lipid accumulation. We then carried out an experiment in the oleic acid (OLA)-induced steatosis model in HepG2 cell to investigate the lipid-lowering effect of WS070117. Oleic acid (0.25 mM) markedly induced lipid accumulation in HepG2 cells, but WS070117 (10 μM) inhibited cellular lipid accumulation. In OLA-treated HepG2 cells, WS070117 (above 1 μM) treatment reduced lipid contents which synthesized from [1-<sup>14</sup>C] labeled acetic acid. Because WS070117 is an analog of adenosine, we evaluated the effect of WS070117 on AMP-activated protein kinase (AMPK) signaling. The results showed that the activation of AMPK in OLA-induced steatosis in HepG2 cells was up-regulated by treatment with 0.1, 1 and 10 μM WS070117. The hepatic cellular AMPK phosphorylation is also up regulated by WS070117 (6 and 18 mg/kg) treatment in HFD fed hamsters.</p> <p>Conclusion</p> <p>These new findings identify WS070117 as a novel molecule that regulates lipid metabolism in the hyperlipidemia hamster model. In vitro and in vivo studies suggested that WS070117 may regulate lipid metabolism through stimulating the activation of AMPK and its downstream pathways.</p

    Effect of Pu-erh tea pomace on the composition and diversity of cecum microflora in Chahua chicken No. 2

    Get PDF
    Pu-erh tea pomace (PTP), a solid substance after extracting functional substances or steeping tea, is rich in crude protein, and crude fiber, and could be used as considerable bioactive substances in animal production. However, its application as poultry feed and its role in regulating the characteristics of gut microorganisms is unclear. The present study investigated the effects of PTP on growth performance and gut microbes of chicken. A total of 144 Chahua chickens No. 2 were individually housed and divided into three groups which were fed diets containing 0% (CK), 1% PTP (T1), and 2% PTP (T2), respectively. The serum and cecum contents were collected after slaughter for analysis. The results indicated that growth performance and carcass traits were not affected by the PTP content. Serum total triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels in the T1 and T2 groups were significantly lower than in the CK group (p &lt; 0.05). The gut microbiota α-diversity in the T2 group was significantly lower than in the CK group (p &lt; 0.05). Based on partial least squares-discriminant analysis (PLS-DA), we observed significant segregation in gut bacterial communities among the groups. At the phylum level, Bacteroidetes and Firmicutes were dominant in the cecum, occupying about 85% of the cecum flora. The relative abundance of Bacteroidetes tended to increase. At the genus level, the relative abundance of Bacteroides is the highest in the CK、T1 and T2 groups. The relative abundances of Bacteroides and Prevotellaceae_UCG-001 microorganisms in the T2 group were significantly higher than in the CK group (p &lt; 0.05). However, the relative abundance of CHKCI001 microorganisms in the T2 group was significantly lower compared to the CK group (p &lt; 0.05). TG content was significantly positively correlated with CHKCI001 relative abundance, and significantly negatively correlated with Prevotellaceae_UCG-001 relative abundance (p &lt; 0.05). Moreover, the LDL-C content was significantly positively correlated with CHKCI001 relative abundance (p &lt; 0.05). In conclusion, PTP could decrease the cholesterol levels in the blood by improving the composition of gut microbiota, which provides a reference for the application of PTP in the poultry industry

    The Functional and Regulatory Mechanisms of the Thellungiella salsuginea Ascorbate Peroxidase 6 (TsAPX6) in Response to Salinity and Water Deficit Stresses.

    No full text
    Soil salinization is a resource and ecological problem in the world. Thellungiella salsuginea is becoming a new model plant because it resembles its relative species, Arabidopsis thaliana, in small genome and short life cycle. It is highly tolerant to salinity and drought stresses. Ascorbate peroxidase (APX) is an enzyme that clears H2O2 in plants. The function and molecular and regulation mechanisms of APX in T. salsuginea have rarely been reported. In this study, an APX gene, TsApx6, was cloned from T. salsuginea and its responses to abiotic stresses in transgenic Arabidopsis were studied. Under high salinity treatment, the expression of TsApx6 was significantly induced. Under drought treatment, overexpression of TsApx6 increased the survival rate and reduced leaf water loss rate in Arabidopsis. Compared to the wild type plants, high salinity treatment reduced the concentrations of MDA, H2O2 and proline but elevated the activities of APX, GPX, CAT and SOD in the TsApx6-overexpressing plants. Meanwhile, germination rate, cotyledon greening, and root length were improved in the transgenic plants compared to the wild type plants under salt and water deficit conditions. Based on these findings, TsApx6 has an important function in the resistance of plants to certain abiotic stresses. The TsApx6 promoter sequence was obtained using Genome Walking technology. Bioinformatics analysis indicated that it contains some cis-acting elements related to stress response. The treatments of salt, dehydration, and ABA induced the expression of Gus gene under the regulation of the TsApx6 promoter. Mutation analysis showed that the MBS motif present in the TsApx6 promoter might be a key negative regulatory element which has an important effect on the growth and developmental process of plants

    Genetic Structure and Phylogeography of Commercial <i>Mytilus unguiculatus</i> in China Based on Mitochondrial <i>COI</i> and <i>Cytb</i> Sequences

    No full text
    In order to study the genetic structure and population geographic distribution pattern of coastal mussel populations in the coast of China, mitochondrial DNA (COI and Cytb genes) were used to analyze the genetic diversity, genetic structure, and population history dynamics of Mytilus unguiculatus in the East China Sea and the Yellow Sea. We detected high levels of genetic diversity in seven populations of M. unguiculatus. A total of 34 haplotypes of COI genes and 29 haplotypes of Cytb were obtained. The haplotype diversity of COI ranged from around 0.77 to 0.93 (Cytb: 0.83~0.91). The nucleotide diversity of COI ranged from around 0.0044 to 0.0064 (Cytb: 0.0049~0.0063). The coefficient of genetic differentiation (FST) of COI ranged from around 0.031 to 0.080, and Cytb ranged from around 0.028 to 0.039. Analysis of molecular variance (AMOVA) and a phylogenetic tree showed that the genetic structure was relatively weak, and there was no clear population differentiation. The neutrality test results showed that Tajima’s D value and Fu’s Fs value were not significant, and no significant population demographic events, including population expansion or population bottleneck, were detected in the samples. The Bayesian skyline graph analysis showed that the effective population size has been relatively stable for nearly 10,000 years, without any large population fluctuations. It was speculated that the seven populations in the present study should belong to the same group. This study provides a comprehensive survey of the genetic characteristics of M. unguiculatus, filling the gaps among related studies. It provides theoretical support and material accumulation for seed selection and breeding, genetic resources’ protection, and breeding management in the future

    Soil Microbial Community Driven by Soil Moisture and Nitrogen in Milk Vetch (<i>Astragalus sinicus</i> L.)–Rapeseed (<i>Brassica napus</i> L.) Intercropping

    No full text
    The soil microbial community is not only driven by plant composition but is also disturbed by the soil environment. Intercropping affects the soil microenvironment through plant interaction, but the understanding of the relationship between soil microbial community and environment in intercropping is still weak. In this study, milk vetch intercropping with rapeseed was used to explore the interaction between soil microorganisms and environment. The results showed that the soil moisture content of intercropping was higher than that of monoculture during the reproductive period of rapeseed growth (flowering and podding stages). The contents of soil total nitrogen and alkali-hydrolyzable nitrogen in intercropping were higher than those in monoculture. The dominant soil microbial communities in intercropping were the same as in monoculture and included Chloroflexi, Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Gemmatimonates and Bacteroidetes. However, intercropping increased the Shannon index and decreased the Simpson’s index of the soil microbial community. The changes in the soil microbial community were mainly related to soil temperature, moisture, pH, total nitrogen, alkali-hydrolyzable nitrogen and available potassium. Moreover, there was a negative correlation between soil moisture and microorganisms and a positive correlation between nitrogen and microorganisms. Thus, milk vetch–rapeseed intercropping could not only improve soil nitrogen content, but also change soil microbial community diversity. In dryland red soil, the effect of milk vetch–rapeseed intercropping on soil moisture and nitrogen was the key factor contributing to the changes in the soil microbial community. When planting rapeseed in the future, we could consider the application of intercropping with milk vetch, which can contribute to regulating the soil nitrogen pool and improving microbial diversity

    Phenotypes of each line in the presence of NaCl treatment during seed germination and early growth.

    No full text
    <p>(A) Sensitivity to NaCl in the WT, <i>atapx6</i>, and <i>TsApx6</i> transgenic plants during seed germination. Surface-sterilized seeds were sown on MS media contained 0, 50, 100 or 150 mM NaCl, and incubated at 22°C for 7 d under a 16-h light and 8-h dark photoperiod. Size bar = 0.5 cm. (B) Quantification of radicle appearance at 3 d after sowing and cotyledon greening at 7 d after sowing in response to NaCl. Data represent means ± SD from four biological replicates (n = 144).</p

    Tracheal microbiome and metabolome profiling in iatrogenic subglottic tracheal stenosis

    No full text
    Abstract Background To study the role of microecology and metabolism in iatrogenic tracheal injury and cicatricial stenosis, we investigated the tracheal microbiome and metabolome in patients with tracheal stenosis after endotracheal intubation. Methods We collected 16 protected specimen brush (PSB) and 8 broncho-alveolar lavage (BAL) samples from 8 iatrogenic subglottic tracheal stenosis patients, including 8 PSB samples from tracheal scar sites, 8 PSB samples from scar-free sites and 8 BAL samples, by lavaging the subsegmental bronchi of the right-middle lobe. Metagenomic sequencing was performed to characterize the microbiome profiling of 16 PSB and 8 BAL samples. Untargeted metabolomics was performed in 6 PSB samples (3 from tracheal scar PSB and 3 from tracheal scar-free PSB) using high-performance liquid chromatography‒mass spectrometry (LC‒MS). Results At the species level, the top four bacterial species were Neisseria subflava, Streptococcus oralis, Capnocytophaga gingivals, and Haemophilus aegyptius. The alpha and beta diversity among tracheal scar PSB, scar-free PSB and BAL samples were compared, and no significant differences were found. Untargeted metabolomics was performed in 6 PSB samples using LC‒MS, and only one statistically significant metabolite, carnitine, was identified. Pathway enrichment analysis of carnitine revealed significant enrichment in fatty acid oxidation. Conclusion Our study found that carnitine levels in tracheal scar tissue were significantly lower than those in scar-free tissue, which might be a new target for the prevention and treatment of iatrogenic tracheal stenosis in the future
    corecore